Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biol Pharm Bull ; 37(7): 1199-206, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24989011

RESUMEN

Salidroside (SA), a phenylpropanoid glycoside isolated from Rhodiola rosea L., has been documented to exert a broad spectrum of pharmacological properties, including protective effects against neuronal death induced by various stresses. To provide further insights into the neuroprotective functions of SA, this study examined whether SA can attenuate cobalt chloride (CoCl2)-induced hypoxia damage and mammalian target of rapamycin (mTOR) signaling repression in PC12 differentiated cells. Differentiated PC12 cells were exposed to CoCl2 for 12 h to mimic hypoxic/ischemic conditions and treated with SA at the same time, followed by electron microscopy and analysis of cell viability, intracellular reactive oxygen species (ROS) level, hypoxia-inducible factor-1α (HIF-1α) level, and the regulated in development and DNA damage responses (REDD1)/mTOR/ p70 ribosomal S6 kinase (p70S6K) signaling pathway. Our data indicated that SA can dramatically attenuate the ultrastructural damage of mitochondria induced by CoCl2 and significantly decrease CoCl2-induced ROS production. Moreover, phosphorylated mammalian target of rapamycin (p-mTOR) was significantly reduced by CoCl2, and this inhibition was relieved by the treatment of SA in PC12 cells, as evidenced by immunoblot and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses. The SA effects were blocked by pretreatment of RAD001. The results indicate that SA can rescue CoCl2-induced repression of REDD1/mTOR/ p70S6K signal transduction in PC12 cells. Our data demonstrate that SA is able to attenuate CoCl2-induced hypoxia damage and mTOR signaling repression, suggesting that SA may protect brain neurons from ischemic injury through mTOR signaling, and provide new insights into the prevention and treatment of cerebral ischemic.


Asunto(s)
Cobalto/toxicidad , Glucósidos/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fenoles/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Técnicas de Cultivo de Célula , Hipoxia de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glucósidos/aislamiento & purificación , Neuronas/metabolismo , Neuronas/ultraestructura , Fármacos Neuroprotectores/aislamiento & purificación , Células PC12 , Fenoles/aislamiento & purificación , Ratas , Especies Reactivas de Oxígeno/metabolismo
2.
Mol Med Rep ; 13(2): 1611-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26739187

RESUMEN

Alzheimer's disease (AD) is a common human neurodegenerative disorder characterized by progressive deterioration of cognition and memory. Acupuncture at the Baihui (DU20) acupoint has long been used in China to clinically treat cognitive impairment. However, the precise mechanism underlying its neuroprotective effects remains to be elucidated. In the present study, electroacupuncture (EA) at the Baihui (DU20) acupoint was observed to markedly ameliorate cognitive impairments, reduce the aberrant overexpression of ß-amyloid(1-42), and inhibit neuronal apoptosis in APP/PS1 mice. As brain-derived neurotrophic factor (BDNF) has been implicated in the pathogenesis of AD, the expression and processing of BDNF in APP/PS1 mice was investigated. EA at the Baihui (DU20) acupoint was indicated to significantly enhance the expression levels of mature BDNF and proBDNF in APP/PS1 mice. Furthermore, an increase in the BDNF/proBDNF ratio, upregulation of the expression levels of phosphorylated tropomyosin receptor kinase B and a decrease in the expression level of p75 neurotrophin receptor were also observed in the APP/PS1 mice. The present study demonstrates the efficacy of EA at the Baihui (DU20) acupoint in the treatment of cognitive impairments in APP/PS1 transgenic mice. The present study hypothesized that modulation of BDNF expression and processing may be the underlying mechanism by which stimulation of the Baihui (DU20) acupoint exerts its neuroprotective effect.


Asunto(s)
Puntos de Acupuntura , Precursor de Proteína beta-Amiloide/genética , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Electroacupuntura , Animales , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Oligopéptidos/genética
3.
Exp Ther Med ; 10(3): 877-884, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26622408

RESUMEN

Spasticity is common in various central neurological conditions, including after a stroke. Such spasticity may cause additional problems, and often becomes a primary concern for afflicted individuals. A number of studies have identified nuclear factor (erythroid-derived 2)-like 2 (Nrf2) as a key regulator in the adaptive survival response to oxidative stress. Elevated expression of Nrf2, combined with heme oxygenase 1 (HO-1) resistance, in the central nervous system is known to elicit key internal and external oxidation protection. Gua Lou Gui Zhi decoction (GLGZD) is a popular traditional Chinese formula with a long history of clinical use in China for the treatment of muscular spasticity following a stroke, epilepsy or a spinal cord injury. However, the mechanism underlying the efficacy of the medicine remains unclear. In the present study, the antioxidative effects of GLGZD were evaluated and the underlying molecular mechanisms were investigated, using hydrogen peroxide (H2O2)-induced rat pheochromocytoma cells (PC12 cells) as an in vitro oxidative stress model of neural cells. Upon application of different concentrations of GLGZD, a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay and ATP measurement were conducted to assess the impact on PC12 cell proliferation. In addition, inverted microscopy observations, and the MTT and ATP assessments, revealed that GLGZD attenuated H2O2-induced oxidative damage and signaling repression in PC12 cells. Furthermore, the mRNA and protein expression levels of Nrf2 and HO-1, which are associated with oxidative stress, were analyzed using reverse transcription quantitative polymerase chain reaction (PCR) and confocal microscopy. Confocal microscopy observations, as well as the quantitative PCR assay, revealed that GLGZD exerted a neuroprotective function against H2O2-induced oxidative damage in PC12 cells. Therefore, the results demonstrated that GLGZD protected PC12 cells injured by H2O2, which may be associated with the upregulation of Nrf2 and HO-1 mRNA and protein expression levels in PC12 cells.

4.
Mol Med Rep ; 12(4): 5957-62, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26260947

RESUMEN

The aim of the present study was to investigate the mechanisms underlying the neuroprotective and antispastic effects of Gua Lou Gui Zhi decoction (GLGZD) in a rat model of middle cerebral artery occlusion (MCAO). The MCAO rats were treated with GLGZD (14.3 g/kg body weight) once a day for a period of seven days. Neurological deficit scores and screen tests were analyzed every other day. Following treatment with GLGZD for 7 days, the ischemic infarct volume of the rat brains was measured using 2,3,5­triphenyl tetrazolium chloride staining. Reverse transcription­polymerase chain reaction was performed in order to determine the mRNA expression levels of γ­amino butyric acid B (γ­GABAB) receptor (R) in the cortical infarct region. Furthermore, the protein expression levels of GABAB R were detected in the cortical infarct region by western blot analysis. Following 7 days, treatment with GLGZD significantly ameliorated the neurological defects and cerebral infarction in the MCAO rats. In addition, treatment with GLGZD ameliorated motor performance in the MCAO rats, as determined by screen tests. Furthermore, GLGZD was able to upregulate the mRNA and protein expression levels of GABAB1 R and GABAB2 R in the ischemic cerebral cortex. The results of the present study suggested that GLGZD may exert neuroprotective and antispastic effects in a cerebral ischemia model, through upregulating the expression of GABAB R.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Fármacos Neuroprotectores/farmacología , Receptores de GABA-B/metabolismo , Espasmo/etiología , Espasmo/metabolismo , Accidente Cerebrovascular/complicaciones , Animales , Infarto Cerebral/complicaciones , Infarto Cerebral/patología , Modelos Animales de Enfermedad , Expresión Génica , Masculino , Actividad Motora/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Ratas , Receptores de GABA-B/genética , Espasmo/tratamiento farmacológico , Accidente Cerebrovascular/patología
5.
Int J Mol Med ; 33(3): 597-604, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24378639

RESUMEN

Gua Lou Gui Zhi decoction (GLGZD), a traditional Chinese medicine consisting of different herbal medicines, has been used for centuries in the treatment of muscular spasticity following stroke, epilepsy or spinal cord injury. However, the precise mechanisms involved remain poorly understood. In the present study, we investigated the neuroprotective effects of GLGZD on glutamate-induced apoptosis in cultured BV-2 cells, as well as the underlying mechanisms. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to assess the viability of the cells. An Annexin V/propidium iodide (PI) assay was utilized to analyze cellular apoptosis. Mitochondrial membrane potential (MMP) was evaluated by flow cytometry and laser scanning confocal microscopy. The gene and protein expression of the apoptosis-related genes, Bcl-2 and Bax, was analyzed by RT-PCR and western blot analysis, respectively. Furthermore, the expression of cleaved caspase-3 protein was detected by immunofluorescence. Glutamate treatment induced the loss of BV-2 cell viability, which was associated with an increase in the apoptotic rate, as well as an increase in the Bax/Bcl-2 ratio and the extracellular levels of cleaved caspase-3. Treatment with GLGZD significantly reversed these phenotypes, with its maximum protective effects observed at the concentration of 1,000 µg/ml. These results indicate that GLGZD protects BV-2 cells from glutamate-induced cytotoxicity. These protective effects may be ascribed to its anti-apoptotic activities, in part, associated with the decrease in the Bax/Bcl-2 ratio and caspase-3 expression, as well as with the stability of high mitochondrial membrane potential.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/biosíntesis , Caspasa 3/genética , Ácido Glutámico/farmacología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA