RESUMEN
Many properties of materials are incompatible with each other or even completely exclusive. Here, we proposed a new concept in view of the trade-off paradox of material properties, which is to macrodirectionally design the microstructure of materials according to their specific service requirements to accurately use the properties of materials to the extreme. By using this concept, we successfully solved the paradox of high strength and high conductivity of copper contact wire in a high-speed train. Our concept can be used to solve the other property paradoxes of functional and structural materials.
RESUMEN
Huangjiu (Chinese rice wine) is a popular and traditional alcoholic beverage in China; however, the consumption of Huangjiu readily results in hangover symptoms. The aim of this study was to identify the main components associated with behavioral inhibition, headache, and the relevant mechanisms by using a mice hangover model. The results of an open-field experiment revealed that the key biogenic amine associated with mice behavior was histamine, which inhibited the behavior activity of mice in a dose-dependent manner. Moreover, histamine treatment decreased the levels of serotonin (5-HT) and 5-hydroxyindole acetic acid. In addition, the levels of dopamine and nitric oxide, which are associated with migraine, increased in the brain tissue of mice. In addition, the expression of receptor genes of 5-HT, including Htr1a, Htr1f, and Htr2c, is essential in regulating various behaviors and mental activities. In conclusion, the present study demonstrated that histamine is a key component in Huangjiu, and it is related to hangover symptoms by affecting the level of 5-HT and its receptors.
RESUMEN
Gradient nanostructured metallic materials with a nanostructured surface layer show immense potential for various industrial applications because of their outstanding mechanical, fatigue, corrosion, tribological properties, etc. In the past several decades, various methods for fabricating gradient nanostructure have been developed. Nevertheless, the thickness of gradient microstructure is still in the micrometer scale due to the limitation of preparation techniques. As a traditional but potential technology, rotary swaging (RS) allows gradient stress and strain to be distributed across the radial direction of a bulk cylindrical workpiece. Therefore, in this review paper, we have systematically summarized gradient and even nano-gradient materials prepared by RS. We found that metals processed by RS usually possess inverse nano-gradient, i.e., nano-grains appear in the sample center, texture-gradient and dislocation density-gradient along the radial direction. Moreover, a broad gradient structure is distributed from center to edge of the whole processed rods. In addition, properties including micro-hardness, conductivity, corrosion, etc., of RS processed metals are also reviewed and discussed. Finally, we look forward to the future prospects and further research work for the RS processed materials.
RESUMEN
In this paper, the tribological behavior of 316L stainless steel with heterogeneous lamella structure (HLS), prepared through 85% cold rolling technology and subsequent annealing treatment (750 °C, 10 min), were conducted on a ball-on-disc tribometer under different normal loads in dry ambient air conditions. The morphologies, structures, and compositions of the raw and worn surfaces were analyzed by 3D surface profilometer, XRD, SEM, EDS and TEM. Based on this, the results showed that the HLS 316L stainless steel samples exhibited lower and more steady friction coefficients than coarse-grained samples, especially under higher loads, which can be attributed to the existence of numerous oxidative particles across sliding interfaces. However, the wear resistance of HLS 316L stainless steel sample was a little weakened compared to that of the coarse-grained sample under a normal load of 5 N. When the load increases up to 15 N, an obviously decreased wear resistance was found for the HLS of the 316L stainless steel sample, which was 50% lower than that of coarse-grained sample. This can be ascribed to the more severe oxidative and abrasive wear performance of HLS 316L stainless steel sample under dry sliding conditions.