Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Cell Proteomics ; 20: 100100, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34029722

RESUMEN

Cone snails produce venom that contains diverse groups of peptides (conopeptides/conotoxins) and display a wide mass range, high rate of posttranslational modifications, and many potential pharmacological targets. Here we employ a proteogenomic approach to maximize conopeptide identification from the injected venom of Conus purpurascens. mRNA sequences from C. purpurascens venom ducts were assembled into a search database and complemented with known sequences and de novo approaches. We used a top-down peptidomic approach and tandem mass spectrometry identification to compare injected venom samples of 27 specimens. This intraspecific analysis yielded 543 unique conopeptide identifications, which included 33 base conopeptides and their toxiforms, 21 of which are novel. The results reveal two distinct venom profiles with different synergistic interactions to effectively target neural pathways aimed to immobilize prey. These venom expression patterns will aid target prediction, a significant step toward developing conotoxins into valuable drugs or neural probes.


Asunto(s)
Caracol Conus , Péptidos/genética , Ponzoñas/genética , Animales , Femenino , Péptidos/química , Proteogenómica , Transcriptoma , Ponzoñas/química
2.
Mol Cell Proteomics ; 18(5): 876-891, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30765458

RESUMEN

The phospholipase A2 (PLA2s) superfamily are ubiquitous small enzymes that catalyze the hydrolysis of phospholipids at the sn-2 ester bond. PLA2s in the venom of cone snails (conodipines, Cdpi) are composed of two chains termed as alpha and beta subunits. Conodipines are categorized within the group IX of PLA2s. Here we describe the purification and biochemical characterization of three conodipines (Cdpi-P1, -P2 and -P3) isolated from the injected venom of Conus purpurascens Using proteomics methods, we determined the full sequences of all three conodipines. Conodipine-P1-3 have conserved consensus catalytic domain residues, including the Asp/His dyad. Additionally, these enzymes are expressed as a mixture of proline hydroxylated isoforms. The activities of the native Conodipine-Ps were evaluated by conventional colorimetric and by MS-based methods, which provide the first detailed cone snail venom conodipine activity monitored by mass spectrometry. Conodipines can have medicinal applications such inhibition of cancer proliferation, bacterial and viral infections among others.


Asunto(s)
Caracol Conus/química , Venenos de Moluscos/química , Fosfolipasas A2/química , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Fraccionamiento Químico , Pollos , Yema de Huevo/metabolismo , Humanos , Inyecciones , Peso Molecular , Proteolisis , Proteómica , Solubilidad , Transcriptoma/genética
3.
J Biol Chem ; 290(2): 1039-48, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25411242

RESUMEN

Activation of the α3ß4 nicotinic acetylcholine receptor (nAChR) subtype has recently been implicated in the pathophysiology of various conditions, including development and progression of lung cancer and in nicotine addiction. As selective α3ß4 nAChR antagonists, α-conotoxins are valuable tools to evaluate the functional roles of this receptor subtype. We previously reported the discovery of a new α4/7-conotoxin, RegIIA. RegIIA was isolated from Conus regius and inhibits acetylcholine (ACh)-evoked currents mediated by α3ß4, α3ß2, and α7 nAChR subtypes. The current study used alanine scanning mutagenesis to understand the selectivity profile of RegIIA at the α3ß4 nAChR subtype. [N11A] and [N12A] RegIIA analogs exhibited 3-fold more selectivity for the α3ß4 than the α3ß2 nAChR subtype. We also report synthesis of [N11A,N12A]RegIIA, a selective α3ß4 nAChR antagonist (IC50 of 370 nM) that could potentially be used in the treatment of lung cancer and nicotine addiction. Molecular dynamics simulations of RegIIA and [N11A,N12A]RegIIA bound to α3ß4 and α3ß2 suggest that destabilization of toxin contacts with residues at the principal and complementary faces of α3ß2 (α3-Tyr(92), Ser(149), Tyr(189), Cys(192), and Tyr(196); ß2-Trp(57), Arg(81), and Phe(119)) may form the molecular basis for the selectivity shift.


Asunto(s)
Conotoxinas/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Antagonistas Nicotínicos/administración & dosificación , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Alanina/química , Alanina/aislamiento & purificación , Animales , Conotoxinas/síntesis química , Conotoxinas/química , Caracol Conus/química , Humanos , Neoplasias Pulmonares/metabolismo , Simulación de Dinámica Molecular , Mutagénesis , Nicotina/efectos adversos , Nicotina/química , Nicotina/metabolismo , Antagonistas Nicotínicos/química , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Xenopus , Receptor Nicotínico de Acetilcolina alfa 7
4.
FASEB J ; 29(3): 1011-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25466886

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) play a pivotal role in synaptic transmission of neuronal signaling pathways and are fundamentally involved in neuronal disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia. In vertebrates, cholinergic pathways can be selectively inhibited by α-conotoxins; we show that in the model organism Drosophila, the cholinergic component of the giant fiber system is inhibited by α-conotoxins MII, AuIB, BuIA, EI, PeIA, and ImI. The injection of 45 pmol/fly of each toxin dramatically decreases the response of the giant fiber to dorsal longitudinal muscle (GF-DLM) connection to 20 ± 13.9% for MII; 26 ± 13.7% for AuIB, 12 ± 9.9% for BuIA, 30 ± 11.3% for EI, 1 ± 1% for PeIA, and 34 ± 15.4% for ImI. Through bioassay-guided fractionation of the venom of Conus brunneus, we found BruIB, an α-conotoxin that inhibits Drosophila nicotinic receptors but not its vertebrate counterparts. GF-DLM responses decreased to 43.7 ± 8.02% on injection of 45 pmol/fly of BruIB. We manipulated the Dα7 nAChR to mimic the selectivity of its vertebrate counterpart by placing structurally guided point mutations in the conotoxin-binding site. This manipulation rendered vertebrate-like behavior in the Drosophila system, enhancing the suitability of Drosophila as an in vivo tool to carry out studies related to human neuronal diseases. .


Asunto(s)
Acetilcolina/farmacología , Conotoxinas/farmacología , Drosophila melanogaster/metabolismo , Antagonistas Nicotínicos/farmacología , Transmisión Sináptica/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/química , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Sitios de Unión , Colinérgicos/farmacología , Caracol Conus/química , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Células Gigantes/citología , Células Gigantes/efectos de los fármacos , Células Gigantes/metabolismo , Humanos , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Mutación/genética , Oocitos/citología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Fragmentos de Péptidos/farmacología , Conformación Proteica , Homología de Secuencia de Aminoácido , Xenopus laevis/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética
5.
Biopolymers ; 104(6): 682-92, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26172377

RESUMEN

Peptide backbone cyclization is a widely used approach to improve the activity and stability of small peptides but until recently it had not been applied to peptides with multiple disulfide bonds. Conotoxins are disulfide-rich conopeptides derived from the venoms of cone snails that have applications in drug design and development. However, because of their peptidic nature, they can suffer from poor bioavailability and poor stability in vivo. In this study two P-superfamily conotoxins, gm9a and bru9a, were backbone cyclized by joining the N- and C-termini with short peptide linkers using intramolecular native chemical ligation chemistry. The cyclized derivatives had conformations similar to the native peptides showing that backbone cyclization can be applied to three disulfide-bonded peptides with cystine knot motifs. Cyclic gm9a was more potent at high voltage-activated (HVA) calcium channels than its acyclic counterpart, highlighting the value of this approach in developing active and stable conotoxins containing cyclic cystine knot motifs.


Asunto(s)
Conotoxinas/química , Ciclotidas/síntesis química , Secuencia de Aminoácidos , Animales , Conotoxinas/farmacología , Ciclización , Drosophila melanogaster , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Datos de Secuencia Molecular , Espectroscopía de Protones por Resonancia Magnética , Ratas , Ratas Wistar , Homología de Secuencia de Aminoácido
6.
Anal Bioanal Chem ; 407(20): 6105-16, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26048056

RESUMEN

The venom of cone snails is composed of highly modified peptides (conopeptides) that target a variety of ion channels and receptors. The venom of these marine gastropods represents a largely untapped resource of bioactive compounds of potential pharmaceutical value. Here, we use a combination of bioanalytical techniques to uncover the extent of venom expression variability in Conus purpurascens, a fish-hunting cone snail species. The injected venom of nine specimens of C. purpurascens was separated by reversed-phase high-performance liquid chromatography (RP-HPLC), and fractions were analyzed using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) in parallel with liquid chromatography-electrospray ionization (LC-ESI)-TripleTOF-MS to compare standard analytical protocols used in preparative bioassay-guided fractionations with a deeper peptidomic analysis. Here, we show that C. purpurascens exhibits pronounced intraspecific venom variability. RP-HPLC fractionation followed by MALDI-TOF-MS analysis of the injected venom of these nine specimens identified 463 distinct masses, with none common to all specimens. Using LC-ESI-TripleTOF-MS, the injected venom of these nine specimens yielded a total of 5517 unique masses. We also compare the injected venom of two specimens with their corresponding dissected venom. We found 2566 and 1990 unique masses for the dissected venom compared to 941 and 1959 masses in their corresponding injected venom. Of these, 742 and 1004 masses overlapped between the dissected and injected venom, respectively. The results indicate that larger conopeptide libraries can be assessed by studying multiple individuals of a given cone snail species. This expanded library of conopeptides enhances the opportunities for discovery of molecular modulators with direct relevance to human therapeutics. Graphical Abstract The venom of cone snails are extraordinarily complex mixtures of highly modified peptides. Venom analysis requires separation through RP-HPLC followed by MALDI-TOF mass spectrometry or direct analysis using LC-ESI-TripleTOF-MS. Using these techniques, venom intraspecific variability and comparison between injected and dissected were assessed.


Asunto(s)
Conotoxinas/análisis , Caracol Conus/química , Animales , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Conotoxinas/aislamiento & purificación , Especificidad de la Especie , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Biochemistry ; 52(14): 2440-52, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23496776

RESUMEN

Spider venom toxins have raised interest in prospecting new drugs and pesticides. Nevertheless, few studies are conducted with tarantula toxins, especially with species found in Brazil. This study aims to characterize chemically and biologically the first toxin isolated from Acanthoscurria paulensis venom. Ap1a consists of 48 amino acid residues and has a molecular mass of 5457.79 Da. The cloned gene encodes a putative sequence of 23 amino acid residues for the signal peptide and 27 for the pro-peptide. The sequence of the mature peptide is 60-84% identical with those of toxins of the HWTX-II family. Different from the structural pattern proposed for these toxins, the disulfide pairing of Ap1a is of the ICK type motif, which is also shared by the U1-TRTX-Bs1a toxin. Ap1a induced a dose-dependent and reversible paralytic effect in Spodoptera frugiperda caterpillars, with an ED50 of 13.0 ± 4.2 µg/g 8 h after injections. In the Drosophila melanogaster Giant Fiber circuit, Ap1a (1.14-22.82 µg/g) reduces both the amplitude and frequency of responses from GF-TTM and GF-DLM pathways, suggesting an action at the neuromuscular junction, which is mediated by glutamatergic receptors. It is also lethal to mice (1.67 µg/g, intracranial route), inducing effects similar to those reported with intracerebroventricular administration of NMDA. Ap1a (1 µM) does not alter the response induced by acetylcholine on the rhabdomyosarcoma cell preparation and shows no significant effects on hNav1.2, hNav1.4, hNav1.5, and hNav1.6 channels. Because of its unique sequence and cysteine assignment to the HWTX-II family, Ap1a is a significant contribution to the structure-function study of this family of toxins.


Asunto(s)
Péptidos/química , Péptidos/farmacología , Venenos de Araña/química , Venenos de Araña/farmacología , Arañas/química , Secuencia de Aminoácidos , Animales , Cisteína/química , Femenino , Células HEK293 , Humanos , Insectos/efectos de los fármacos , Masculino , Ratones , Datos de Secuencia Molecular , Parálisis/inducido químicamente , Péptidos/aislamiento & purificación , Péptidos/toxicidad , Estructura Secundaria de Proteína , Receptores Nicotínicos/metabolismo , Venenos de Araña/aislamiento & purificación , Venenos de Araña/toxicidad , Canales de Sodio Activados por Voltaje/metabolismo
8.
FASEB J ; 26(12): 5141-51, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22972919

RESUMEN

APETx3, a novel peptide isolated from the sea anemone Anthopleura elegantissima, is a naturally occurring mutant from APETx1, only differing by a Thr to Pro substitution at position 3. APETx1 is believed to be a selective modulator of human ether-á-go-go related gene (hERG) potassium channels with a K(d) of 34 nM. In this study, APETx1, 2, and 3 have been subjected to an electrophysiological screening on a wide range of 24 ion channels expressed in Xenopus laevis oocytes: 10 cloned voltage-gated sodium channels (Na(V) 1.2-Na(V)1.8, the insect channels DmNa(V)1, BgNa(V)1-1a, and the arachnid channel VdNa(V)1) and 14 cloned voltage-gated potassium channels (K(V)1.1-K(V)1.6, K(V)2.1, K(V)3.1, K(V)4.2, K(V)4.3, K(V)7.2, K(V)7.4, hERG, and the insect channel Shaker IR). Surprisingly, the Thr3Pro substitution results in a complete abolishment of APETx3 modulation on hERG channels and provides this toxin the ability to become a potent (EC(50) 276 nM) modulator of voltage-gated sodium channels (Na(V)s) because it slows down the inactivation of mammalian and insect Na(V) channels. Our study also shows that the homologous toxins APETx1 and APETx2 display promiscuous properties since they are also capable of recognizing Na(V) channels with IC(50) values of 31 nM and 114 nM, respectively, causing an inhibition of the sodium conductance without affecting the inactivation. Our results provide new insights in key residues that allow these sea anemone toxins to recognize distinct ion channels with similar potency but with different modulatory effects. Furthermore, we describe for the first time the target promiscuity of a family of sea anemone toxins thus far believed to be highly selective.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Mutación Puntual , Anémonas de Mar/metabolismo , Toxinas Biológicas/farmacología , Animales , Venenos de Cnidarios/genética , Venenos de Cnidarios/metabolismo , Venenos de Cnidarios/farmacología , Relación Dosis-Respuesta a Droga , Electrofisiología , Femenino , Humanos , Insectos/genética , Insectos/metabolismo , Activación del Canal Iónico/fisiología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Oocitos/fisiología , Canales de Potasio/genética , Canales de Potasio/metabolismo , Canales de Potasio/fisiología , Anémonas de Mar/genética , Canales de Sodio/genética , Canales de Sodio/metabolismo , Canales de Sodio/fisiología , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Xenopus laevis
9.
J Biol Chem ; 285(52): 40673-80, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20923766

RESUMEN

Crustacean cardioactive peptide (CCAP) and related peptides are multifunctional regulatory neurohormones found in invertebrates. We isolated a CCAP-related peptide (conoCAP-a, for cone snail CardioActive Peptide) and cloned the cDNA of its precursor from venom of Conus villepinii. The precursor of conoCAP-a encodes for two additional CCAP-like peptides: conoCAP-b and conoCAP-c. This multi-peptide precursor organization is analogous to recently predicted molluscan CCAP-like preprohormones, and suggests a mechanism for the generation of biological diversification without gene amplification. While arthropod CCAP is a cardio-accelerator, we found that conoCAP-a decreases the heart frequency in Drosophila larvae, demonstrating that conoCAP-a and CCAP have opposite effects. Intravenous injection of conoCAP-a in rats caused decreased heart frequency and blood pressure in contrast to the injection of CCAP, which did not elicit any cardiac effect. Perfusion of rat ventricular cardiac myocytes with conoCAP-a decreased systolic calcium, indicating that conoCAP-a cardiac negative inotropic effects might be mediated via impairment of intracellular calcium trafficking. The contrasting cardiac effects of conoCAP-a and CCAP indicate that molluscan CCAP-like peptides have functions that differ from those of their arthropod counterparts. Molluscan CCAP-like peptides sequences, while homologous, differ between taxa and have unique sequences within a species. This relates to the functional hypervariability of these peptides as structure activity relationship studies demonstrate that single amino acids variations strongly affect cardiac activity. The discovery of conoCAPs in cone snail venom emphasizes the significance of their gene plasticity to have mutations as an adaptive evolution in terms of structure, cellular site of expression, and physiological functions.


Asunto(s)
Calcio/metabolismo , Caracol Conus/genética , Crustáceos/genética , Variación Genética , Frecuencia Cardíaca/efectos de los fármacos , Venenos de Moluscos , Miocitos Cardíacos/metabolismo , Neuropéptidos , Animales , Secuencia de Bases , Clonación Molecular , Drosophila melanogaster , Transporte Iónico/efectos de los fármacos , Larva , Masculino , Datos de Secuencia Molecular , Venenos de Moluscos/genética , Venenos de Moluscos/farmacología , Neuropéptidos/genética , Neuropéptidos/farmacología , Ratas , Ratas Wistar
10.
J Proteomics ; 234: 104083, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33373718

RESUMEN

Using high-throughput BioPlex assays, we determined that six fractions from the venom of Conus nux inhibit the adhesion of various recombinant PfEMP-1 protein domains (PF08_0106 CIDR1α3.1, PF11_0521 DBL2ß3, and PFL0030c DBL3X and DBL5e) to their corresponding receptors (CD36, ICAM-1, and CSA, respectively). The protein domain-receptor interactions permit P. falciparum-infected erythrocytes (IE) to evade elimination in the spleen by adhering to the microvasculature in various organs including the placenta. The sequences for the main components of the fractions, determined by tandem mass spectrometry, yielded four T-superfamily conotoxins, one (CC-Loop-CC) with I-IV, II-III connectivity and three (CC-Loop-CXaaC) with a I-III, II-IV connectivity. The 3D structure for one of the latter, NuxVA = GCCPAPLTCHCVIY, revealed a novel scaffold defined by double turns forming a hairpin-like structure stabilized by the two disulfide bonds. Two other main fraction components were a miniM conotoxin, and a O2-superfamily conotoxin with cysteine framework VI/VII. This study is the first one of its kind suggesting the use of conotoxins for developing pharmacological tools for anti-adhesion adjunct therapy against malaria. Similarly, mitigation of emerging diseases like AIDS and COVID-19, can also benefit from conotoxins as inhibitors of protein-protein interactions as treatment. BIOLOGICAL SIGNIFICANCE: Among the 850+ species of cone snail species there are hundreds of thousands of diverse venom exopeptides that have been selected throughout several million years of evolution to capture prey and deter predators. They do so by targeting several surface proteins present in target excitable cells. This immense biomolecular library of conopeptides can be explored for potential use as therapeutic leads against persistent and emerging diseases affecting non-excitable systems. We aim to expand the pharmacological reach of conotoxins/conopeptides by revealing their in vitro capacity to disrupt protein-protein and protein-polysaccharide interactions that directly contribute to pathology of Plasmodium falciparum malaria. This is significant for severe forms of malaria, which might be deadly even after treated with current parasite-killing drugs because of persistent cytoadhesion of P. falciparum infected erythrocytes even when parasites within red blood cells are dead. Anti-adhesion adjunct drugs would de-sequester or prevent additional sequestration of infected erythrocytes and may significantly improve survival of malaria patients. These results provide a lead for further investigations into conotoxins and other venom peptides as potential candidates for anti-adhesion or blockade-therapies. This study is the first of its kind and it suggests that conotoxins can be developed as pharmacological tools for anti-adhesion adjunct therapy against malaria. Similarly, mitigation of emerging diseases like AIDS and COVID-19, can also benefit from conotoxins as potential inhibitors of protein-protein interactions as treatment.


Asunto(s)
Antígenos CD36 , Enzimas Reparadoras del ADN , Eritrocitos , Molécula 1 de Adhesión Intercelular , Venenos de Moluscos , Plasmodium falciparum , Factores de Transcripción , Animales , Antígenos CD36/química , Antígenos CD36/metabolismo , COVID-19 , Caracol Conus , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Eritrocitos/química , Eritrocitos/metabolismo , Eritrocitos/parasitología , Humanos , Molécula 1 de Adhesión Intercelular/química , Molécula 1 de Adhesión Intercelular/metabolismo , Venenos de Moluscos/química , Venenos de Moluscos/farmacología , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Dominios Proteicos , Proteínas Protozoarias , SARS-CoV-2 , Factores de Transcripción/química , Factores de Transcripción/metabolismo
11.
Biochem J ; 404(3): 413-9, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17331075

RESUMEN

Vasopressins and oxytocins are homologous, ubiquitous and multifunctional peptides present in animals. Conopressins are vasopressin/oxytocin-related peptides that have been found in the venom of cone snails, a genus of marine predatory molluscs that envenom their prey with a complex mixture of neuroactive peptides. In the present paper, we report the purification and characterization of a unique conopressin isolated from the venom of Conus villepinii, a vermivorous cone snail species from the western Atlantic Ocean. This novel peptide, designated gamma-conopressin-vil, has the sequence CLIQDCPgammaG* (gamma is gamma-carboxyglutamate and * is C-terminal amidation). The unique feature of this vasopressin/oxytocin-like peptide is that the eighth residue is gamma-carboxyglutamate instead of a neutral or basic residue; therefore it could not be directly classified into either the vasopressin or the oxytocin peptide families. Nano-NMR spectroscopy of the peptide isolated directly from the cone snails revealed that the native gamma-conopressin-vil undergoes structural changes in the presence of calcium. This suggests that the peptide binds calcium, and the calcium-binding process is mediated by the gamma-carboxyglutamate residue. However, the negatively charged residues in the sequence of gamma-conopressin-vil may mediate calcium binding by a novel mechanism not observed in other peptides of this family.


Asunto(s)
Ácido 1-Carboxiglutámico/metabolismo , Caracol Conus/química , Venenos de Moluscos/química , Oxitocina/análogos & derivados , Péptidos/química , Vasopresinas/química , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Datos de Secuencia Molecular , Venenos de Moluscos/genética , Venenos de Moluscos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxitocina/química , Oxitocina/genética , Oxitocina/metabolismo , Péptidos/genética , Péptidos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Peptides ; 107: 75-82, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30040981

RESUMEN

The F14 conotoxins define a four-cysteine, three-loop conotoxin scaffold that produce tightly folded structures held together by two disulfide bonds with a CCCC arrangement (conotoxin framework 14). Here we describe the precursors of the F14 conotoxins from the venom of Conus anabathrum and Conus villepinii. Using transcriptomic and cDNA cloning analysis, the full-length of the precursors of flf14a and flf14b from the transcriptome of C. anabathrum revealed a unique signal sequence that defines the new conotoxin R-superfamily. Using the signal sequence as a primer, we cloned seven additional previously undescribed toxins of the R-superfamily from C. villepinii. The propeptide regions of the R-conotoxins are unusually long and with prevalent proline residues in repeating pentads which qualifies them as Pro-rich motifs (PRMs), which can be critical for protein-protein interactions or they can be cleaved to release short linear peptides that may be part of the envenomation mélange. Additionally, we determined the three-dimensional structure of vil14a by solution 1H-NMR and found that the structure of this conotoxin displays a cysteine-stabilized α-helix-loop-helix (Cs α/α) fold. The structure is well-defined over the helical regions (backbone RMSD for residues 2-13 and 17-26 is 0.63 ± 0.14 Å), with conformational flexibility in the triple Gly region of the second loop as well as the N- and C- termini. Structurally, the F14 conotoxins overlap with the Cs α/α scorpion toxins and other peptidic natural products, and in spite of their different exogenomic origins, there is convergence into this scaffold from several classes of living organisms that express these peptides.


Asunto(s)
Conotoxinas/metabolismo , Caracol Conus/metabolismo , Secuencia de Aminoácidos , Animales , Conotoxinas/química , Caracol Conus/química , Modelos Moleculares , Conformación Proteica , Análisis de Secuencia de Proteína , Análisis de Secuencia de ARN
13.
Sci Rep ; 8(1): 330, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321522

RESUMEN

Cone snail venoms have separately evolved for predation and defense. Despite remarkable inter- and intra-species variability, defined sets of synergistic venom peptides (cabals) are considered essential for prey capture by cone snails. To better understand the role of predatory cabals in cone snails, we used a high-throughput proteomic data mining and visualisation approach. Using this approach, the relationship between the predatory venom peptides from nine C. purpurascens was systematically analysed. Surprisingly, potentially synergistic levels of κ-PVIIA and δ-PVIA were only identified in five of nine specimens. In contrast, the remaining four specimens lacked significant levels of these known excitotoxins and instead contained high levels of the muscle nAChR blockers ψ-PIIIE and αA-PIVA. Interestingly, one of nine specimens expressed both cabals, suggesting that these sub-groups might represent inter-breeding sub-species of C. purpurascens. High throughput cluster analysis also revealed these two cabals clustered with distinct groups of venom peptides that are presently uncharacterised. This is the first report showing that the cone snails of the same species can deploy two separate and distinct predatory cabals for prey capture and shows that the cabals deployed by this species can be more complex than presently realized. Our semi-automated proteomic analysis facilitates the deconvolution of complex venoms to identify co-evolved families of peptides and help unravel their evolutionary relationships in complex venoms.


Asunto(s)
Caracol Conus/fisiología , Venenos de Moluscos/metabolismo , Péptidos/metabolismo , Conducta Predatoria , Proteómica , Animales , Cromatografía Liquida , Conotoxinas/genética , Conotoxinas/metabolismo , Expresión Génica , Venenos de Moluscos/genética , Péptidos/genética , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
14.
FEBS J ; 285(5): 887-902, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29283511

RESUMEN

The mini-M conotoxins are peptidic scaffolds found in the venom of cones snails. These scaffolds are tightly folded structures held together by three disulfide bonds with a CC-C-C-CC arrangement (conotoxin framework III) and belong to the M Superfamily of conotoxins. Here, we describe mini-M conotoxins from the venom of Conus regius, a Western Atlantic worm-hunting cone snail species using transcriptomic and peptidomic analyses. These C. regius conotoxins belong to three different subtypes: M1, M2, and M3. The subtypes show little sequence homology, and their loop sizes (intercysteine amino acid chains) vary significantly. The mini-Ms isolated from dissected venom contains preferentially hydroxylated proline residues, thus augmenting the structural reach of this conotoxin class. Using 2D-NMR methods, we have determined the 3D structure of reg3b, an M2 subtype conotoxin, which shows a constrained multi-turn scaffold. The structural diversity found within mini-M conotoxin scaffolds of C. regius is indicative of structural hypervariability of the conotoxin M superfamily that is not seen in other superfamilies. These stable minimalistic scaffolds may be investigated for the development of engineered peptides for therapeutic applications. DATABASES: Sequences are available in GenBank under accession numbers MF588935-MF588952. Structural data are available in the RCSB protein database under the accession code 6BX9.


Asunto(s)
Conotoxinas/química , Caracol Conus/química , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Cistina/química , Hidroxiprolina/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Pliegue de Proteína , Precursores de Proteínas/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Transcriptoma
15.
Sci Rep ; 7(1): 12742, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28986583

RESUMEN

α7 nicotinic acetylcholine receptors (nAChRs) are ubiquitous in the nervous system and ensure important neurophysiological functionality for many processes. However, they are also found in cells of the immune system, where their role has been less studied. Here we report the pro-inflammatory effect of ImI, a well characterized conotoxin that inhibits α7 nAChRs, on differentiated THP-1 pre-monocyte macrophages (MDM) obtained by phorbol 12-myristate 13 acetate (PMA) treatment. Enzyme-linked immunosorbent assay (ELISA) performed on supernatant fluids of LPS challenged MDM showed ImI-mediated upregulation of pro-inflammatory cytokine TNF-α in an ImI concentration-dependent manner from 0.5 to 5.0 µmol/L and for IL-8 up to 1.0 µmol/L. Levels of anti-inflammatory cytokine TGF-ß remained practically unaffected in ImI treated MDMs. Nicotine at 10 µmol/L significantly downregulated the release of TNF-α, but showed a lesser effect on IL-8 secretion and no effect on TGF-ß. Fluorescent competitive assays involving ImI, α-bungarotoxin and nicotine using MDM and the murine macrophage RAW 264.7 suggest a common binding site in the α7 receptor. This work extends the application of conotoxins as molecular probes to non-excitatory cells, such as macrophages and supports the involvement of the α7 nAChR in regulating the inflammatory response via the cholinergic anti-inflammatory pathway (CAP).


Asunto(s)
Conotoxinas/toxicidad , Interleucina-8/metabolismo , Leucemia/patología , Macrófagos/metabolismo , Monocitos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Antiinflamatorios/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Leucemia/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones , Monocitos/efectos de los fármacos , Nicotina/farmacología , Células RAW 264.7 , Células THP-1 , Acetato de Tetradecanoilforbol/farmacología , Factores de Tiempo
16.
J Proteomics ; 164: 73-84, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28479398

RESUMEN

Hyaluronidases are ubiquitous enzymes commonly found in venom and their main function is to degrade hyaluran, which is the major glycosaminoglycan of the extracellular matrix in animal tissues. Here we describe the purification and characterization of a 60kDa hyaluronidase found in the injected venom from Conus purpurascens, Conohyal-P1. Using a combined strategy based on transcriptomic and proteomic analysis, we determined the Conohyal-P1 sequence. Conohyal-P1 has conserved consensus catalytic and positioning domain residues characteristic of hyaluronidases and a C-terminus EGF-like domain. Additionally, the enzyme is expressed as a mixture of glycosylated isoforms at five asparagine sites. The activity of the native Conohyal-P1 was assess MS-based methods and confirmed by classical turbidimetric methods. The MS-based assay is particularly sensitive and provides the first detailed analysis of a venom hyaluronidase activity monitored with this method. The discovery of new hyaluronidases and the development of techniques to evaluate their performance can advance several therapeutic procedures, as these enzymes are widely used for enhanced drug delivery applications. BIOLOGICAL SIGNIFICANCE: Cone snail venom is a remarkable source of therapeutically important molecules, as is the case of conotoxins, which have undergone extensive clinical trials for several applications. In addition to the conotoxins, a large array of proteins have been reported in the venom of several species of cone snails, including enzymes that were found in dissected and injected Conus venom. Here we describe the isolation and characterization of the hyaluronidase Conohyal-P1 from the injected venom of C. purpurascens. We employed a combined transcriptomic and proteomic analysis to obtain the full sequence of this hyaluronidase. The activity of Conohyal-P1 was assessed by a mass spectrometry-based method, which provide the first detailed venom hyaluronidase activity analysis monitored by mass spectrometry allowing the visualization of the substrate degradation by the enzyme.


Asunto(s)
Caracol Conus/química , Hialuronoglucosaminidasa , Venenos de Moluscos , Secuencia de Aminoácidos , Animales , Hialuronoglucosaminidasa/química , Hialuronoglucosaminidasa/aislamiento & purificación , Venenos de Moluscos/química , Venenos de Moluscos/aislamiento & purificación , Dominios Proteicos
17.
Sci Rep ; 7(1): 14794, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093547

RESUMEN

MS-based proteomic analysis was combined with in silico quantum mechanical calculations to improve understanding of protein adduction by N-phenylhydroxylamine (PhNHOH) and nitrosobenzene (NOB), metabolic products of aniline. In vitro adduction of model peptides containing nucleophilic sidechains (Cys, His, and Lys) and selected proteins (bovine and human hemoglobin and ß-lactoglobulin-A) were characterized. Peptide studies identified the Cys thiolate as the most reactive nucleophile for these metabolites, a result consistent with in silico calculations of reactivity parameters. For PhNHOH, sulfinamides were identified as the primary adduction products, which were stable following tryptic digestion. Conversely, reactions with NOB yielded an additional oxidized adduct, the sulfonamide. In vitro exposure of human whole blood to PhNHOH and NOB demonstrated that only sulfinamides were formed. In addition to previously reported adduction of ß93Cys of human Hb, two novel sites of adduction were found; α104Cys and ß112Cys. We also report CD and UV-Vis spectroscopy studies of adducted human Hb that revealed loss of α-helical content and deoxygenation. The results provide additional understanding of the covalent interaction of aromatic amine metabolites with protein nucleophiles.


Asunto(s)
Compuestos de Anilina/química , Hemoglobinas/química , Hidroxilaminas/química , Compuestos Nitrosos/química , Animales , Bovinos , Humanos , Oxidación-Reducción , Dominios Proteicos
18.
Neuropharmacology ; 127: 253-259, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28917942

RESUMEN

α-Conotoxins inhibit nicotinic acetylcholine receptors (nAChRs) and are used as probes to study cholinergic pathways in vertebrates. Model organisms, such as Drosophila melanogaster, express nAChRs in their CNS that are suitable to investigate the neuropharmacology of α-conotoxins in vivo. Here we report the paired nanoinjection of native α-conotoxin PIA and two novel α-conotoxins, PIC and PIC[O7], from the injected venom of Conus purpurascens and electrophysiological recordings of their effects on the giant fiber system (GFS) of D. melanogaster and heterologously expressed nAChRs in Xenopus oocytes. α-PIA caused disruption of the function of giant fiber dorsal longitudinal muscle (GF-DLM) pathway by inhibiting the Dα7 nAChR a homolog to the vertebrate α7 nAChR, whereas PIC and PIC[O7] did not. PIC and PIC[O7] reversibly inhibited ACh-evoked currents mediated by vertebrate rodent (r)α1ß1δγ, rα1ß1δε and human (h)α3ß2, but not hα7 nAChR subtypes expressed in Xenopus oocytes with the following selectivity: rα1ß1δε > rα1ß1δγ ≈ hα3ß2 >> hα7. Our study emphasizes the importance of loop size and α-conotoxin sequence specificity for receptor binding. These studies can be used for the evaluation of the neuropharmacology of novel α-conotoxins that can be utilized as molecular probes for diseases such as, Alzheimer's, Parkinson's, and cancer. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'


Asunto(s)
Conotoxinas/farmacología , Caracol Conus/química , Potenciales de la Membrana/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Acetilcolina/farmacología , Animales , Cromatografía Líquida de Alta Presión , Conotoxinas/química , Relación Dosis-Respuesta a Droga , Drosophila melanogaster , Potenciales de la Membrana/genética , Microinyecciones , Modelos Moleculares , Oocitos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Xenopus
20.
Toxicon ; 65: 59-67, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23339854

RESUMEN

The venom of cone snails has been the subject of intense studies because it contains small neuroactive peptides of therapeutic value. However, much less is known about their larger proteins counterparts and their role in prey envenomation. Here, we analyzed the proteolytic enzymes in the injected venom of Conus purpurascens and Conus ermineus (piscivorous), and the dissected venom of C. purpurascens, Conus marmoreus (molluscivorous) and Conus virgo (vermivorous). Zymograms show that all venom samples displayed proteolytic activity on gelatin. However, the electrophoresis patterns and sizes of the proteases varied considerably among these four species. The protease distribution also varied dramatically between the injected and dissected venom of C. purpurascens. Protease inhibitors demonstrated that serine and metalloproteases are responsible for the gelatinolytic activity. We found fibrinogenolytic activity in the injected venom of C. ermineus suggesting that this venom might have effects on the hemostatic system of the prey. Remarkable differences in protein and protease expression were found in different sections of the venom duct, indicating that these components are related to the storage granules and that they participate in venom biosynthesis. Consequently, different conoproteases play major roles in venom processing and prey envenomation.


Asunto(s)
Caracol Conus/enzimología , Venenos de Moluscos/enzimología , Péptido Hidrolasas/química , Animales , Electroforesis en Gel de Poliacrilamida , Fibrinolíticos/química , Fibrinolíticos/farmacología , Gelatina/química , Humanos , Concentración de Iones de Hidrógeno , Metaloproteasas/química , Metaloproteasas/metabolismo , Metaloproteasas/farmacología , Venenos de Moluscos/química , Venenos de Moluscos/toxicidad , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/farmacología , Plasma/química , Plasma/efectos de los fármacos , Plasma/enzimología , Inhibidores de Proteasas/química , Serina Proteasas/química , Serina Proteasas/metabolismo , Serina Proteasas/farmacología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA