Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nucleic Acids Res ; 50(11): 6001-6019, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34897510

RESUMEN

Translational readthrough (TR) occurs when the ribosome decodes a stop codon as a sense codon, resulting in two protein isoforms synthesized from the same mRNA. TR has been identified in several eukaryotic organisms; however, its biological significance and mechanism remain unclear. Here, we quantify TR of several candidate genes in Drosophila melanogaster and characterize the regulation of TR in the large Maf transcription factor Traffic jam (Tj). Using CRISPR/Cas9-generated mutant flies, we show that the TR-generated Tj isoform is expressed in a subset of neural cells of the central nervous system and is excluded from the somatic cells of gonads. Control of TR in Tj is critical for preservation of neuronal integrity and maintenance of reproductive health. The tissue-specific distribution of a release factor splice variant, eRF1H, plays a critical role in modulating differential TR of leaky stop codon contexts. Fine-tuning of gene regulatory functions of transcription factors by TR provides a potential mechanism for cell-specific regulation of gene expression.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción , Animales , Codón de Terminación/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Nature ; 540(7631): 80-85, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27842381

RESUMEN

In all domains of life, selenocysteine (Sec) is delivered to the ribosome by selenocysteine-specific tRNA (tRNASec) with the help of a specialized translation factor, SelB in bacteria. Sec-tRNASec recodes a UGA stop codon next to a downstream mRNA stem-loop. Here we present the structures of six intermediates on the pathway of UGA recoding in Escherichia coli by single-particle cryo-electron microscopy. The structures explain the specificity of Sec-tRNASec binding by SelB and show large-scale rearrangements of Sec-tRNASec. Upon initial binding of SelB-Sec-tRNASec to the ribosome and codon reading, the 30S subunit adopts an open conformation with Sec-tRNASec covering the sarcin-ricin loop (SRL) on the 50S subunit. Subsequent codon recognition results in a local closure of the decoding site, which moves Sec-tRNASec away from the SRL and triggers a global closure of the 30S subunit shoulder domain. As a consequence, SelB docks on the SRL, activating the GTPase of SelB. These results reveal how codon recognition triggers GTPase activation in translational GTPases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Ribosomas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Codón de Terminación/química , Codón de Terminación/genética , Codón de Terminación/metabolismo , Microscopía por Crioelectrón , Endorribonucleasas/metabolismo , Activación Enzimática , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestructura , Proteínas Fúngicas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Dominios Proteicos , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , ARN de Transferencia Aminoácido-Específico/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Ribosomas/química , Ribosomas/enzimología , Ribosomas/ultraestructura , Ricina/metabolismo , Selenocisteína/metabolismo
3.
Cell Mol Life Sci ; 78(21-22): 6869-6885, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34541613

RESUMEN

The central role of eukaryotic translation initiation factor 4E (eIF4E) in controlling mRNA translation has been clearly assessed in the last decades. eIF4E function is essential for numerous physiological processes, such as protein synthesis, cellular growth and differentiation; dysregulation of its activity has been linked to ageing, cancer onset and progression and neurodevelopmental disorders, such as autism spectrum disorder (ASD) and Fragile X Syndrome (FXS). The interaction between eIF4E and the eukaryotic initiation factor 4G (eIF4G) is crucial for the assembly of the translational machinery, the initial step of mRNA translation. A well-characterized group of proteins, named 4E-binding proteins (4E-BPs), inhibits the eIF4E-eIF4G interaction by competing for the same binding site on the eIF4E surface. 4E-BPs and eIF4G share a single canonical motif for the interaction with a conserved hydrophobic patch of eIF4E. However, a second non-canonical and not conserved binding motif was recently detected for eIF4G and several 4E-BPs. Here, we review the structural features of the interaction between eIF4E and its molecular partners eIF4G and 4E-BPs, focusing on the implications of the recent structural and biochemical evidence for the development of new therapeutic strategies. The design of novel eIF4E-targeting molecules that inhibit translation might provide new avenues for the treatment of several conditions.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Humanos , Trastornos del Neurodesarrollo/metabolismo , Unión Proteica/fisiología , Biosíntesis de Proteínas/fisiología
4.
Nucleic Acids Res ; 48(3): 1056-1067, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31511883

RESUMEN

During canonical translation, the ribosome moves along an mRNA from the start to the stop codon in exact steps of one codon at a time. The collinearity of the mRNA and the protein sequence is essential for the quality of the cellular proteome. Spontaneous errors in decoding or translocation are rare and result in a deficient protein. However, dedicated recoding signals in the mRNA can reprogram the ribosome to read the message in alternative ways. This review summarizes the recent advances in understanding the mechanisms of three types of recoding events: stop-codon readthrough, -1 ribosome frameshifting and translational bypassing. Recoding events provide insights into alternative modes of ribosome dynamics that are potentially applicable to other non-canonical modes of prokaryotic and eukaryotic translation.


Asunto(s)
Biosíntesis de Proteínas , Codón de Terminación , Sistema de Lectura Ribosómico , Ribosomas/metabolismo
5.
RNA ; 21(12): 2047-52, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26475831

RESUMEN

The ribosome is the molecular machine responsible for protein synthesis in all living organisms. Its catalytic core, the peptidyl transferase center (PTC), is built of rRNA, although several proteins reach close to the inner rRNA shell. In the Escherichia coli ribosome, the flexible N-terminal tail of the ribosomal protein L27 contacts the A- and P-site tRNA. Based on computer simulations of the PTC and on previous biochemical evidence, the N-terminal α-amino group of L27 was suggested to take part in the peptidyl-transfer reaction. However, the contribution of this group to catalysis has not been tested experimentally. Here we investigate the role of L27 in peptide-bond formation using fast kinetics approaches. We show that the rate of peptide-bond formation at physiological pH, both with aminoacyl-tRNA or with the substrate analog puromycin, is independent of the presence of L27; furthermore, translation of natural mRNAs is only marginally affected in the absence of L27. The pH dependence of the puromycin reaction is unaltered in the absence of L27, indicating that the N-terminal α-amine is not the ionizing group taking part in catalysis. Likewise, L27 is not required for the peptidyl-tRNA hydrolysis during termination. Thus, apart from the known effect on subunit association, which most likely explains the phenotype of the deletion strains, L27 does not appear to be a key player in the core mechanism of peptide-bond formation on the ribosome.


Asunto(s)
Biosíntesis de Proteínas , Proteínas Ribosómicas/química , Ribosomas/química , Proteínas y Péptidos de Choque por Frío/biosíntesis , Proteínas y Péptidos de Choque por Frío/química , Escherichia coli , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Cinética , Proteínas Ribosómicas/fisiología , Ribosomas/fisiología
6.
Nucleic Acids Res ; 43(22): 10700-12, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26338773

RESUMEN

The transition of the 30S initiation complex (IC) to the translating 70S ribosome after 50S subunit joining provides an important checkpoint for mRNA selection during translation in bacteria. Here, we study the timing and control of reactions that occur during 70S IC formation by rapid kinetic techniques, using a toolbox of fluorescence-labeled translation components. We present a kinetic model based on global fitting of time courses obtained with eight different reporters at increasing concentrations of 50S subunits. IF1 and IF3 together affect the kinetics of subunit joining, but do not alter the elemental rates of subsequent steps of 70S IC maturation. After 50S subunit joining, IF2-dependent reactions take place independent of the presence of IF1 or IF3. GTP hydrolysis triggers the efficient dissociation of fMet-tRNA(fMet) from IF2 and promotes the dissociation of IF2 and IF1 from the 70S IC, but does not affect IF3. The presence of non-hydrolyzable GTP analogs shifts the equilibrium towards a stable 70S-mRNA-IF1-IF2-fMet-tRNA(fMet) complex. Our kinetic analysis reveals the molecular choreography of the late stages in translation initiation.


Asunto(s)
Bacterias/genética , Extensión de la Cadena Peptídica de Translación , Iniciación de la Cadena Peptídica Traduccional , Escherichia coli/genética , Escherichia coli/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Factor 1 Procariótico de Iniciación/metabolismo , Factor 3 Procariótico de Iniciación/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo
7.
Proc Natl Acad Sci U S A ; 111(40): 14418-23, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25246550

RESUMEN

GTP hydrolysis by elongation factor Tu (EF-Tu), a translational GTPase that delivers aminoacyl-tRNAs to the ribosome, plays a crucial role in decoding and translational fidelity. The basic reaction mechanism and the way the ribosome contributes to catalysis are a matter of debate. Here we use mutational analysis in combination with measurements of rate/pH profiles, kinetic solvent isotope effects, and ion dependence of GTP hydrolysis by EF-Tu off and on the ribosome to dissect the reaction mechanism. Our data suggest that--contrary to current models--the reaction in free EF-Tu follows a pathway that does not involve the critical residue H84 in the switch II region. Binding to the ribosome without a cognate codon in the A site has little effect on the GTPase mechanism. In contrast, upon cognate codon recognition, the ribosome induces a rearrangement of EF-Tu that renders GTP hydrolysis sensitive to mutations of Asp21 and His84 and insensitive to K(+) ions. We suggest that Asp21 and His84 provide a network of interactions that stabilize the positions of the γ-phosphate and the nucleophilic water, respectively, and thus play an indirect catalytic role in the GTPase mechanism on the ribosome.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sitios de Unión/genética , Catálisis , Dominio Catalítico , Codón/genética , Codón/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Guanosina Trifosfato/química , Histidina/química , Histidina/genética , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Mutación , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Unión Proteica , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/química
8.
Biopolymers ; 105(8): 463-75, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26971860

RESUMEN

Translational GTPases (trGTPases) play key roles in facilitating protein synthesis on the ribosome. Despite the high degree of evolutionary conservation in the sequences of their GTP-binding domains, the rates of GTP hydrolysis and nucleotide exchange vary broadly between different trGTPases. EF-Tu, one of the best-characterized model G proteins, evolved an exceptionally rapid and tightly regulated GTPase activity, which ensures rapid and accurate incorporation of amino acids into the nascent chain. Other trGTPases instead use the energy of GTP hydrolysis to promote movement or to ensure the forward commitment of translation reactions. Recent data suggest the GTPase mechanism of EF-Tu and provide an insight in the catalysis of GTP hydrolysis by its unusual activator, the ribosome. Here we summarize these advances in understanding the functional cycle and the regulation of trGTPases, stimulated by the elucidation of their structures on the ribosome and the progress in dissecting the reaction mechanism of GTPases. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 463-475, 2016.


Asunto(s)
Guanosina Trifosfato , Factor Tu de Elongación Peptídica , Biosíntesis de Proteínas/fisiología , Ribosomas , Animales , Catálisis , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Ribosomas/química , Ribosomas/metabolismo
9.
Curr Med Chem ; 29(20): 3501-3529, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35209811

RESUMEN

The mechanistic/mammalian target of rapamycin (mTOR) is the crucial hub of signalling pathways that regulate essential steps in the cell life cycle. Once incorporated in the mTORC1 complex, mTOR phosphorylates the eukaryotic initiation factor 4E (eIF4E)- binding protein 1 (4E-BP1), which then releases eIF4E. When not bound to 4EBPs, eIF4E recognizes the mRNA 5'-cap structure and, together with eIF4A and eIF4G, it forms the eIF4F complex that recruits the ribosome on the mRNA. Under normal conditions, the cellular concentration of eIF4E is very low, making eIF4E the limiting factor in the initiation of protein synthesis. The vast majority of cancer types are characterized by the simultaneous deregulation of the mTOR/4E-BP1 signalling pathway and upregulation of eIF4E, which lead to an increased expression of cancer-promoting genes and deregulated cellular growth. Over the last decades, a growing number of selective inhibitors of the mTOR/4E-BP1/eIF4E pathway have been discovered or designed. Several inhibitors with encouraging preclinical results have been tested in clinical trials. This review summarizes the most recent research on drug development against mTOR, 4E-BP1, and eIF4E, describing the design rationale and the available structural and functional data on the most promising compounds.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Fosfoproteínas , Fosforilación , ARN Mensajero/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
10.
Cancer Drug Resist ; 4(3): 596-606, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35582305

RESUMEN

Ovarian carcinoma is one of the most common causes for cancer death in women; lack of early diagnosis and acquired resistance to platinum-based chemotherapy account for its poor prognosis and high mortality rate. As with other cancer types, ovarian cancer is characterized by dysregulated signaling pathways and protein synthesis, which together contribute to rapid cellular growth and invasiveness. The mechanistic/mammalian target of rapamycin (mTOR) pathway represents the core of different signaling pathways regulating a number of essential steps in the cell, among which protein synthesis and the eukaryotic initiation factor 4E (eIF4E), the mRNA cap binding protein, is one of its downstream effectors. eIF4E is a limiting factor in translation initiation and its overexpression is a hallmark in many cancers. Because its action is regulated by a number of factors that compete for the same binding site, eIF4E is an ideal target for developing novel antineoplastic drugs. Several inhibitors targeting the mTOR signaling pathway have been designed thus far, however most of these molecules show poor stability and high toxicity in vivo. This minireview explores the possibility of targeting mTOR and eIF4E proteins, thus impacting on translation initiation in ovarian cancer, describing the most promising experimental strategies and specific inhibitors that have been shown to have an effect on other kinds of cancers.

11.
Nat Commun ; 11(1): 4106, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796827

RESUMEN

Alternative ribosome-rescue factor B (ArfB) rescues ribosomes stalled on non-stop mRNAs by releasing the nascent polypeptide from the peptidyl-tRNA. By rapid kinetics we show that ArfB selects ribosomes stalled on short truncated mRNAs, rather than on longer mRNAs mimicking pausing on rare codon clusters. In combination with cryo-electron microscopy we dissect the multistep rescue pathway of ArfB, which first binds to ribosomes very rapidly regardless of the mRNA length. The selectivity for shorter mRNAs arises from the subsequent slow engagement step, as it requires longer mRNA to shift to enable ArfB binding. Engagement results in specific interactions of the ArfB C-terminal domain with the mRNA entry channel, which activates peptidyl-tRNA hydrolysis by the N-terminal domain. These data reveal how protein dynamics translate into specificity of substrate recognition and provide insights into the action of a putative rescue factor in mitochondria.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Microscopía por Crioelectrón , ARN Mensajero/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/ultraestructura , Ribosomas/ultraestructura
12.
Nat Commun ; 9(1): 3053, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-30076302

RESUMEN

During translation termination in bacteria, the release factors RF1 and RF2 are recycled from the ribosome by RF3. While high-resolution structures of the individual termination factors on the ribosome exist, direct structural insight into how RF3 mediates dissociation of the decoding RFs has been lacking. Here we have used the Apidaecin 137 peptide to trap RF1 together with RF3 on the ribosome and visualize an ensemble of termination intermediates using cryo-electron microscopy. Binding of RF3 to the ribosome induces small subunit (SSU) rotation and swivelling of the head, yielding intermediate states with shifted P-site tRNAs and RF1 conformations. RF3 does not directly eject RF1 from the ribosome, but rather induces full rotation of the SSU that indirectly dislodges RF1 from its binding site. SSU rotation is coupled to the accommodation of the GTPase domain of RF3 on the large subunit (LSU), thereby promoting GTP hydrolysis and dissociation of RF3 from the ribosome.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de Escherichia coli/metabolismo , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Simulación del Acoplamiento Molecular , Terminación de la Cadena Péptídica Traduccional , Unión Proteica , Conformación Proteica , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Ribosomas/metabolismo
13.
Elife ; 72018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29889659

RESUMEN

Release factors RF1 and RF2 promote hydrolysis of peptidyl-tRNA during translation termination. The GTPase RF3 promotes recycling of RF1 and RF2. Using single molecule FRET and biochemical assays, we show that ribosome termination complexes that carry two factors, RF1-RF3 or RF2-RF3, are dynamic and fluctuate between non-rotated and rotated states, whereas each factor alone has its distinct signature on ribosome dynamics and conformation. Dissociation of RF1 depends on peptide release and the presence of RF3, whereas RF2 can dissociate spontaneously. RF3 binds in the GTP-bound state and can rapidly dissociate without GTP hydrolysis from termination complex carrying RF1. In the absence of RF1, RF3 is stalled on ribosomes if GTP hydrolysis is blocked. Our data suggest how the assembly of the ribosome-RF1-RF3-GTP complex, peptide release, and ribosome fluctuations promote termination of protein synthesis and recycling of the release factors.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/genética , Aminoacil-ARN de Transferencia/genética , Ribosomas/genética , Carbocianinas/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólisis , Cinética , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Imagen Individual de Molécula , Termodinámica
14.
Artículo en Inglés | MEDLINE | ID: mdl-28138068

RESUMEN

Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation.This article is part of the themed issue 'Perspectives on the ribosome'.


Asunto(s)
Factores de Elongación de Péptidos/metabolismo , ARN de Transferencia Aminoácido-Específico/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Bacterias/metabolismo , Células Eucariotas/metabolismo , Factor Tu de Elongación Peptídica/metabolismo
15.
Nat Struct Mol Biol ; 24(9): 752-757, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28741611

RESUMEN

Many antibiotics stop bacterial growth by inhibiting different steps of protein synthesis. However, no specific inhibitors of translation termination are known. Proline-rich antimicrobial peptides, a component of the antibacterial defense system of multicellular organisms, interfere with bacterial growth by inhibiting translation. Here we show that Api137, a derivative of the insect-produced antimicrobial peptide apidaecin, arrests terminating ribosomes using a unique mechanism of action. Api137 binds to the Escherichia coli ribosome and traps release factor (RF) RF1 or RF2 subsequent to the release of the nascent polypeptide chain. A high-resolution cryo-EM structure of the ribosome complexed with RF1 and Api137 reveals the molecular interactions that lead to RF trapping. Api137-mediated depletion of the cellular pool of free release factors causes the majority of ribosomes to stall at stop codons before polypeptide release, thereby resulting in a global shutdown of translation termination.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Proteínas de Escherichia coli/metabolismo , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Microscopía por Crioelectrón , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/ultraestructura , Modelos Biológicos , Modelos Moleculares , Factores de Terminación de Péptidos/ultraestructura , Ribosomas/ultraestructura
16.
Nat Struct Mol Biol ; 19(6): 609-15, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22562136

RESUMEN

Initiation factors guide the ribosome in the selection of mRNA and translational reading frame. We determined the kinetically favored assembly pathway of the 30S preinitiation complex (30S PIC), an early intermediate in 30S initiation complex formation in Escherichia coli. IF3 and IF2 are the first factors to arrive, forming an unstable 30S-IF2-IF3 complex. Subsequently, IF1 joins and locks the factors in a kinetically stable 30S PIC to which fMet-tRNA(fMet) is recruited. Binding of mRNA is independent of initiation factors and can take place at any time during 30S PIC assembly, depending on the cellular concentration of the mRNA and the structural determinants at the ribosome-binding site. The kinetic analysis shows both specific and cumulative effects of initiation factors as well as kinetic checkpoints of mRNA selection at the entry into translation.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Factor 3 Procariótico de Iniciación/metabolismo , ARN Bacteriano/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Secuencia de Bases , Escherichia coli/química , Proteínas de Escherichia coli/química , Cinética , Modelos Moleculares , Factor 2 Procariótico de Iniciación/química , Factor 3 Procariótico de Iniciación/química , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , ARN Bacteriano/química , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA