Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 77(1): 180-188.e9, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31630969

RESUMEN

The mitochondrial proteome is built mainly by import of nuclear-encoded precursors, which are targeted mostly by cleavable presequences. Presequence processing upon import is essential for proteostasis and survival, but the consequences of dysfunctional protein maturation are unknown. We find that impaired presequence processing causes accumulation of precursors inside mitochondria that form aggregates, which escape degradation and unexpectedly do not cause cell death. Instead, cells survive via activation of a mitochondrial unfolded protein response (mtUPR)-like pathway that is triggered very early after precursor accumulation. In contrast to classical stress pathways, this immediate response maintains mitochondrial protein import, membrane potential, and translation through translocation of the nuclear HMG-box transcription factor Rox1 to mitochondria. Rox1 binds mtDNA and performs a TFAM-like function pivotal for transcription and translation. Induction of early mtUPR provides a reversible stress model to mechanistically dissect the initial steps in mtUPR pathways with the stressTFAM Rox1 as the first line of defense.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/fisiología , Muerte Celular/fisiología , Núcleo Celular/metabolismo , ADN Mitocondrial/metabolismo , Potenciales de la Membrana/fisiología , Biosíntesis de Proteínas/fisiología , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/fisiología
2.
PLoS Genet ; 17(7): e1009664, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34214073

RESUMEN

Mitochondrial defects can cause a variety of human diseases and protective mechanisms exist to maintain mitochondrial functionality. Imbalances in mitochondrial proteostasis trigger a transcriptional program, termed mitochondrial unfolded protein response (mtUPR). However, the temporal sequence of events in mtUPR is unclear and the consequences on mitochondrial protein import are controversial. Here, we have quantitatively analyzed all main import pathways into mitochondria after different time spans of mtUPR induction. Kinetic analyses reveal that protein import into all mitochondrial subcompartments strongly increases early upon mtUPR and that this is accompanied by rapid remodelling of the mitochondrial signature lipid cardiolipin. Genetic inactivation of cardiolipin synthesis precluded stimulation of protein import and compromised cellular fitness. At late stages of mtUPR upon sustained stress, mitochondrial protein import efficiency declined. Our work clarifies the enigma of protein import upon mtUPR and identifies sequential mtUPR stages, in which an early increase in protein biogenesis to restore mitochondrial proteostasis is followed by late stages characterized by a decrease in import capacity upon prolonged stress induction.


Asunto(s)
Cardiolipinas/metabolismo , Transporte de Proteínas/fisiología , Respuesta de Proteína Desplegada/fisiología , Cardiolipinas/fisiología , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Transporte de Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada/genética
3.
Biochemistry ; 55(51): 7065-7072, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27977164

RESUMEN

Mge1, a yeast homologue of Escherichia coli GrpE, is an evolutionarily conserved homodimeric nucleotide exchange factor of mitochondrial Hsp70. Temperature-dependent reversible structural alteration from a dimeric to a monomeric form is critical for Mge1 to act as a thermosensor. However, very limited information about the structural component or amino acid residue(s) that contributes to thermal sensing of Mge1/GrpE is available. In this report, we have identified a single point mutation, His167 to Leu (H167L), within the hinge region of Mge1 that confers thermal resistance to yeast. Circular dichroism, cross-linking, and refolding studies with recombinant proteins show that the Mge1 H167L mutant has increased thermal stability compared to that of wild-type Mge1 and also augments Hsp70-mediated protein refolding activity. While thermal denaturation studies suggest flexibility in the mutant, ionic quenching studies and limited proteolysis analysis reveal a relatively more rigid structure compared to that of the wild type. Intriguingly, Thermus thermophilus GrpE has a leucine at the corresponding position akin to the Mge1 mutant, and thermophilus proteins are well-known for their rigidity and hydrophobicity. Taken together, our results show that the yeast Mge1 H167L mutant functionally and structurally mimics T. thermophilus GrpE.


Asunto(s)
Proteínas HSP70 de Choque Térmico/genética , Calor , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Mutación Puntual , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Dicroismo Circular , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Desnaturalización Proteica , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Estabilidad Proteica , Desplegamiento Proteico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
4.
Nat Commun ; 15(1): 5265, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902238

RESUMEN

Mitochondria require an extensive proteome to maintain a variety of metabolic reactions, and changes in cellular demand depend on rapid adaptation of the mitochondrial protein composition. The TOM complex, the organellar entry gate for mitochondrial precursors in the outer membrane, is a target for cytosolic kinases to modulate protein influx. DYRK1A phosphorylation of the carrier import receptor TOM70 at Ser91 enables its efficient docking and thus transfer of precursor proteins to the TOM complex. Here, we probe TOM70 phosphorylation in molecular detail and find that TOM70 is not a CK2 target nor import receptor for MIC19 as previously suggested. Instead, we identify TOM20 as a MIC19 import receptor and show off-target inhibition of the DYRK1A-TOM70 axis with the clinically used CK2 inhibitor CX4945 which activates TOM20-dependent import pathways. Taken together, modulation of DYRK1A signalling adapts the central mitochondrial protein entry gate via synchronization of TOM70- and TOM20-dependent import pathways for metabolic rewiring. Thus, DYRK1A emerges as a cytosolic surveillance kinase to regulate and fine-tune mitochondrial protein biogenesis.


Asunto(s)
Quinasas DyrK , Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Transducción de Señal , Proteínas Tirosina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Mitocondrias/metabolismo , Humanos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Fosforilación , Transporte de Proteínas , Células HEK293 , Células HeLa , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
5.
J Proteomics ; 252: 104430, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34813945

RESUMEN

A role for reversible phosphorylation in regulation of mitochondrial proteins has been neglected for a long time. Particularly, the import machineries that mediate influx of more than 1000 different precursor proteins into the organelle were considered as predominantly constitutively active entities. Only recently, a combination of advanced phosphoproteomic approaches and Phos-tag technology enabled the discovery of several phosphorylation sites at the translocase of the outer membrane TOM and the identification of cellular signalling cascades that allow dynamic adaptation of the protein influx into mitochondria upon changing cellular demands. Here, we present a protocol that allows biochemical and semi-quantitative profiling of intra-mitochondrial protein phosphorylation. We exemplify this with the pyruvate dehydrogenase complex (PDH), which serves as a central metabolic switch in energy metabolism that is based on reversible phosphorylation. Phos-tag technology allows rapid monitoring of the metabolic state via simultaneous detection of phosphorylated and non-phosphorylated species of the PDH core component Pda1. Our protocol can be applied for several further intra-organellar proteins like respiratory chain complexes or protein translocases of the inner membrane. SIGNIFICANCE: Our manuscript describes for the first time how Phos-tag technology can be applied to monitor phosphorylation of intramitochondrial proteins. We exemplify this with the regulation of the pyruvate dehydrogenase complex as central regulatory switch in energy metabolism. We show that our protocol allows a rapid monitoring of the metabolic state of the cell (phosphorylated PDH is inactive while non-phosphorylated PDH is active) and can be applied for rapid profiling of different metabolic conditions as well as for profiling phosphorylation of further intramitochondrial protein (complexes).


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Piridinas , Tecnología
6.
FEBS J ; 288(2): 600-613, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32491259

RESUMEN

The mitochondrial proteome is built and maintained mainly by import of nuclear-encoded precursor proteins. Most of these precursors use N-terminal presequences as targeting signals that are removed by mitochondrial matrix proteases. The essential mitochondrial processing protease MPP cleaves presequences after import into the organelle thereby enabling protein folding and functionality. The cleaved presequences are subsequently degraded by peptidases. While most of these processes have been discovered in yeast, characterization of the human enzymes is still scarce. As the matrix presequence peptidase PreP has been reported to play a role in Alzheimer's disease, analysis of impaired peptide turnover in human cells is of huge interest. Here, we report the characterization of HEK293T PreP knockout cells. Loss of PreP causes severe defects in oxidative phosphorylation and changes in nuclear expression of stress response marker genes. The mitochondrial defects upon lack of PreP result from the accumulation of presequence peptides that trigger feedback inhibition of MPP and accumulation of nonprocessed precursor proteins. Also, the mitochondrial intermediate peptidase MIP that cleaves eight residues from a subset of precursors after MPP processing is compromised upon loss of PreP suggesting that PreP also degrades MIP generated octapeptides. Investigation of the PrePR183Q patient mutation associated with neurological disorders revealed that the mutation destabilizes the protein making it susceptible to enhanced degradation and aggregation upon heat shock. Taken together, our data reveal a functional coupling between precursor processing by MPP and MIP and presequence degradation by PreP in human mitochondria that is crucial to maintain a functional organellar proteome.


Asunto(s)
Retroalimentación Fisiológica , Metaloendopeptidasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Serina Endopeptidasas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Sistemas CRISPR-Cas , Fraccionamiento Celular , Proliferación Celular , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/deficiencia , Mutación , Oligopéptidos/genética , Oligopéptidos/metabolismo , Fosforilación Oxidativa , Proteolisis , Serina Endopeptidasas/deficiencia , Estrés Fisiológico/genética , Peptidasa de Procesamiento Mitocondrial
7.
Nat Commun ; 12(1): 4284, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257281

RESUMEN

The translocase of the outer mitochondrial membrane TOM constitutes the organellar entry gate for nearly all precursor proteins synthesized on cytosolic ribosomes. Thus, TOM presents the ideal target to adjust the mitochondrial proteome upon changing cellular demands. Here, we identify that the import receptor TOM70 is targeted by the kinase DYRK1A and that this modification plays a critical role in the activation of the carrier import pathway. Phosphorylation of TOM70Ser91 by DYRK1A stimulates interaction of TOM70 with the core TOM translocase. This enables transfer of receptor-bound precursors to the translocation pore and initiates their import. Consequently, loss of TOM70Ser91 phosphorylation results in a strong decrease in import capacity of metabolite carriers. Inhibition of DYRK1A impairs mitochondrial structure and function and elicits a protective transcriptional response to maintain a functional import machinery. The DYRK1A-TOM70 axis will enable insights into disease mechanisms caused by dysfunctional DYRK1A, including autism spectrum disorder, microcephaly and Down syndrome.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Trastorno del Espectro Autista/genética , Citosol/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Microcefalia/genética , Microcefalia/metabolismo , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Quinasas DyrK
8.
Mitochondrion ; 46: 140-148, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29649582

RESUMEN

Perturbations in mitochondrial redox levels oxidize nucleotide exchanger Mge1, compromising its ability to bind to the Hsp70, while the Mxr2 enzyme reduces the oxidized Mge1. However, the effects of persistent oxidative stress on Mge1 structure and function are not known. In this study, we show that oxidation-induced selective and local structural adaptations cause the detachment of Mge1 from Hsp70. Notably, persistent oxidative stress causes monomeric Mge1 to aggregate and to generate amyloid-type particles. Mxr2 appears to protect Mge1 from oxidative stress induced aggregation. We conclude that the Mxr2-Mge1-Hsp70 protein triad is finely regulated through structural alterations of Mge1 mediated by redox levels.


Asunto(s)
Adaptación Biológica , Proteínas HSP70 de Choque Térmico/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Estrés Oxidativo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Metionina Sulfóxido Reductasas/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Chaperonas Moleculares/genética , Oxidación-Reducción , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
Sci Rep ; 8(1): 2716, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426933

RESUMEN

Cells across evolution employ reversible oxidative modification of methionine and cysteine amino acids within proteins to regulate responses to redox stress. Previously we have shown that mitochondrial localized methionine sulfoxide reductase (Mxr2) reversibly regulates oxidized yeast Mge1 (yMge1), a co-chaperone of Hsp70/Ssc1 to maintain protein homeostasis during oxidative stress. However, the specificity and the conservation of the reversible methionine oxidation mechanism in higher eukaryotes is debatable as human GrpEL1 (hGrpEL1) unlike its homolog yMge1 harbors two methionine residues and multiple cysteines besides the mammalian mitochondria hosting R and S types of Mxrs/Msrs. In this study, using yeast as a surrogate system, we show that hGRPEL1 and R type MSRs but not the S type MSRs complement the deletion of yeast MGE1 or MXR2 respectively. Our investigations show that R type Msrs interact selectively with oxidized hGrpEL1/yMge1 in an oxidative stress dependent manner, reduce the conserved hGrpEL1-Met146-SO and rescue the Hsp70 ATPase activity. In addition, a single point mutation in hGrpEL1-M146L rescues the slow growth phenotype of yeast MXR2 deletion under oxidative duress. Our study illustrates the evolutionarily conserved formation of specific Met-R-SO in hGrpEL1/yMge1 and the essential and canonical role of R type Msrs/Mxrs in mitochondrial redox mechanism.


Asunto(s)
Ferredoxina-NADP Reductasa/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Cisteína/metabolismo , Ferredoxina-NADP Reductasa/genética , Prueba de Complementación Genética , Proteínas HSP70 de Choque Térmico/genética , Humanos , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Mol Biol Cell ; 26(3): 406-19, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25428986

RESUMEN

Peptide methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in protein(s). Although these reductases have been implicated in several human diseases, there is a dearth of information on the identity of their physiological substrates. By using Saccharomyces cerevisiae as a model, we show that of the two methionine sulfoxide reductases (MXR1, MXR2), deletion of mitochondrial MXR2 renders yeast cells more sensitive to oxidative stress than the cytosolic MXR1. Our earlier studies showed that Mge1, an evolutionarily conserved nucleotide exchange factor of Hsp70, acts as an oxidative sensor to regulate mitochondrial Hsp70. In the present study, we show that Mxr2 regulates Mge1 by selectively reducing MetO at position 155 and restores the activity of Mge1 both in vitro and in vivo. Mge1 M155L mutant rescues the slow-growth phenotype and aggregation of proteins of mxr2Δ strain during oxidative stress. By identifying the first mitochondrial substrate for Mxrs, we add a new paradigm to the regulation of the oxidative stress response pathway.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Metionina Sulfóxido Reductasas/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Estrés Oxidativo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Metionina/metabolismo , Proteínas Mutantes , Oxidación-Reducción , Oxidorreductasas
11.
Mol Biol Cell ; 24(6): 692-703, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23345595

RESUMEN

Despite the growing evidence of the role of oxidative stress in disease, its molecular mechanism of action remains poorly understood. The yeast Saccharomyces cerevisiae provides a valuable model system in which to elucidate the effects of oxidative stress on mitochondria in higher eukaryotes. Dimeric yeast Mge1, the cochaperone of heat shock protein 70 (Hsp70), is essential for exchanging ATP for ADP on Hsp70 and thus for recycling of Hsp70 for mitochondrial protein import and folding. Here we show an oxidative stress-dependent decrease in Mge1 dimer formation accompanied by a concomitant decrease in Mge1-Hsp70 complex formation in vitro. The Mge1-M155L substitution mutant stabilizes both Mge1 dimer and Mge1-Hsp70 complex formation. Most important, the Mge1-M155L mutant rescues the slow-growth phenomenon associated with the wild-type Mge1 strain in the presence of H2O2 in vivo, stimulation of the ATPase activity of Hsp70, and the protein import defect during oxidative stress in vitro. Furthermore, cross-linking studies reveal that Mge1-Hsp70 complex formation in mitochondria isolated from wild-type Mge1 cells is more susceptible to reactive oxygen species compared with mitochondria from Mge1-M155L cells. This novel oxidative sensor capability of yeast Mge1 might represent an evolutionarily conserved function, given that human recombinant dimeric Mge1 is also sensitive to H2O2.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Peróxido de Hidrógeno/farmacología , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutación , Estrés Oxidativo , Multimerización de Proteína , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA