Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
IEEE Trans Med Imaging ; PP2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865222

RESUMEN

Neuro-oncological surgery is the primary brain cancer treatment, yet it faces challenges with gliomas due to their invasiveness and the need to preserve neurological function. Hence, radical resection is often unfeasible, highlighting the importance of precise tumor margin delineation to prevent neurological deficits and improve prognosis. Imaging Mueller polarimetry, an effective modality in various organ tissues, seems a promising approach for tumor delineation in neurosurgery. To further assess its use, we characterized the polarimetric properties by analysing 45 polarimetric measurements of 27 fresh brain tumor samples, including different tumor types with a strong focus on gliomas. Our study integrates a wide-field imaging Mueller polarimetric system and a novel neuropathology protocol, correlating polarimetric and histological data for accurate tissue identification. An image processing pipeline facilitated the alignment and overlay of polarimetric images and histological masks. Variations in depolarization values were observed for grey and white matter of brain tumor tissue, while differences in linear retardance were seen only within white matter of brain tumor tissue. Notably, we identified pronounced optical axis azimuth randomization within tumor regions. This study lays the foundation for machine learning-based brain tumor segmentation algorithms using polarimetric data, facilitating intraoperative diagnosis and decision making.

2.
Int J Comput Assist Radiol Surg ; 19(6): 1033-1043, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503943

RESUMEN

PURPOSE: Wide-field imaging Mueller polarimetry is a revolutionary, label-free, and non-invasive modality for computer-aided intervention; in neurosurgery, it aims to provide visual feedback of white matter fibre bundle orientation from derived parameters. Conventionally, robust polarimetric parameters are estimated after averaging multiple measurements of intensity for each pair of probing and detected polarised light. Long multi-shot averaging, however, is not compatible with real-time in vivo imaging, and the current performance of polarimetric data processing hinders the translation to clinical practice. METHODS: A learning-based denoising framework is tailored for fast, single-shot, noisy acquisitions of polarimetric intensities. Also, performance-optimised image processing tools are devised for the derivation of clinically relevant parameters. The combination recovers accurate polarimetric parameters from fast acquisitions with near-real-time performance, under the assumption of pseudo-Gaussian polarimetric acquisition noise. RESULTS: The denoising framework is trained, validated, and tested on experimental data comprising tumour-free and diseased human brain samples in different conditions. Accuracy and image quality indices showed significant ( p < 0.05 ) improvements on testing data for a fast single-pass denoising versus the state-of-the-art and high polarimetric image quality standards. The computational time is reported for the end-to-end processing. CONCLUSION: The end-to-end image processing achieved real-time performance for a localised field of view ( ≈ 6.5 mm 2 ). The denoised polarimetric intensities produced visibly clear directional patterns of neuronal fibre tracts in line with reference polarimetric image quality standards; directional disruption was kept in case of neoplastic lesions. The presented advances pave the way towards feasible oncological neurosurgical translations of novel, label-free, interventional feedback.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Procedimientos Neuroquirúrgicos , Humanos , Procedimientos Neuroquirúrgicos/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Cirugía Asistida por Computador/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/cirugía
3.
Front Oncol ; 14: 1389608, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841162

RESUMEN

Objectives: Confocal laser endomicroscopy (CLE) is an intraoperative real-time cellular resolution imaging technology that images brain tumor histoarchitecture. Previously, we demonstrated that CLE images may be interpreted by neuropathologists to determine the presence of tumor infiltration at glioma margins. In this study, we assessed neurosurgeons' ability to interpret CLE images from glioma margins and compared their assessments to those of neuropathologists. Methods: In vivo CLE images acquired at the glioma margins that were previously reviewed by CLE-experienced neuropathologists were interpreted by four CLE-experienced neurosurgeons. A numerical scoring system from 0 to 5 and a dichotomous scoring system based on pathological features were used. Scores from assessments of hematoxylin and eosin (H&E)-stained sections and CLE images by neuropathologists from a previous study were used for comparison. Neurosurgeons' scores were compared to the H&E findings. The inter-rater agreement and diagnostic performance based on neurosurgeons' scores were calculated. The concordance between dichotomous and numerical scores was determined. Results: In all, 4275 images from 56 glioma margin regions of interest (ROIs) were included in the analysis. With the numerical scoring system, the inter-rater agreement for neurosurgeons interpreting CLE images was moderate for all ROIs (mean agreement, 61%), which was significantly better than the inter-rater agreement for the neuropathologists (mean agreement, 48%) (p < 0.01). The inter-rater agreement for neurosurgeons using the dichotomous scoring system was 83%. The concordance between the numerical and dichotomous scoring systems was 93%. The overall sensitivity, specificity, positive predictive value, and negative predictive value were 78%, 32%, 62%, and 50%, respectively, using the numerical scoring system and 80%, 27%, 61%, and 48%, respectively, using the dichotomous scoring system. No statistically significant differences in diagnostic performance were found between the neurosurgeons and neuropathologists. Conclusion: Neurosurgeons' performance in interpreting CLE images was comparable to that of neuropathologists. These results suggest that CLE could be used as an intraoperative guidance tool with neurosurgeons interpreting the images with or without assistance of the neuropathologists. The dichotomous scoring system is robust yet simple and may streamline rapid, simultaneous interpretation of CLE images during imaging.

4.
J Neurosurg ; 140(2): 357-366, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37542440

RESUMEN

OBJECTIVE: Confocal laser endomicroscopy (CLE) is a US Food and Drug Administration-cleared intraoperative real-time fluorescence-based cellular resolution imaging technology that has been shown to image brain tumor histoarchitecture rapidly in vivo during neuro-oncological surgical procedures. An important goal for successful intraoperative implementation is in vivo use at the margins of infiltrating gliomas. However, CLE use at glioma margins has not been well studied. METHODS: Matching in vivo CLE images and tissue biopsies acquired at glioma margin regions of interest (ROIs) were collected from 2 institutions. All images were reviewed by 4 neuropathologists experienced in CLE. A scoring system based on the pathological features was implemented to score CLE and H&E images from each ROI on a scale from 0 to 5. Based on the H&E scores, all ROIs were divided into a low tumor probability (LTP) group (scores 0-2) and a high tumor probability (HTP) group (scores 3-5). The concordance between CLE and H&E scores regarding tumor probability was determined. The intraclass correlation coefficient (ICC) and diagnostic performance were calculated. RESULTS: Fifty-six glioma margin ROIs were included for analysis. Interrater reliability of the scoring system was excellent when used for H&E images (ICC [95% CI] 0.91 [0.86-0.94]) and moderate when used for CLE images (ICC [95% CI] 0.69 [0.40-0.83]). The ICCs (95% CIs) of the LTP group (0.68 [0.40-0.83]) and HTP group (0.68 [0.39-0.83]) did not differ significantly. The concordance between CLE and H&E scores was 61.6%. The sensitivity and specificity values of the scoring system were 79% and 37%. The positive predictive value (PPV) and negative predictive value were 65% and 53%, respectively. Concordance, sensitivity, and PPV were greater in the HTP group than in the LTP group. Specificity was higher in the newly diagnosed group than in the recurrent group. CONCLUSIONS: CLE may detect tumor infiltration at glioma margins. However, it is not currently dependable, especially in scenarios where low probability of tumor infiltration is expected. The proposed scoring system has excellent intrinsic interrater reliability, but its interrater reliability is only moderate when used with CLE images. These results suggest that this technology requires further exploration as a method for consistent actionable intraoperative guidance with high dependability across the range of tumor margin scenarios. Specific-binding and/or tumor-specific fluorophores, a CLE image atlas, and a consensus guideline for image interpretation may help with the translational utility of CLE.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Reproducibilidad de los Resultados , Microscopía Confocal/métodos , Glioma/diagnóstico por imagen , Glioma/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Rayos Láser
5.
Pathology ; 55(4): 466-477, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37032198

RESUMEN

Homozygous deletion (HD) of the CDKN2A/B locus has emerged as an unfavourable prognostic marker in diffuse gliomas, both IDH-mutant and IDH-wild-type. Testing for CDKN2A/B deletions can be performed by a variety of approaches, including copy number variation (CNV) analysis based on gene array analysis, next generation sequencing (NGS) or fluorescence in situ hybridisation (FISH), but questions remain regarding the accuracy of testing modalities. In this study, we assessed: (1) the utility of S-methyl-5'-thioadenosine phosphorylase (MTAP) and cellular tumour suppressor protein pl61NK4a (p16) immunostainings as surrogate markers for CDKN2A/B HD in gliomas, and (2) the prognostic value of MTAP, across different histological tumour grades and IDH mutation status. One hundred consecutive cases of diffuse and circumscribed gliomas (Cohort 1) were collected, in order to correlate MTAP and p16 expression with the CDKN2A/B status in the CNV plot of each tumour. IDH1 R132H, ATRX and MTAP immunohistochemistry was performed on next generation tissue microarrays (ngTMAs) of 251 diffuse gliomas (Cohort 2) for implementing survival analysis. Complete loss of MTAP and p16 by immunohistochemistry was 100% and 90% sensitive as well as 97% and 89% specific for CDKN2A/B HD, respectively, as identified on CNV plot. Only two cases (2/100) with MTAP and p16 loss of expression did not demonstrate CDKN2A/B HD in CNV plot; however, FISH analysis confirmed the HD for CDKN2A/B. Moreover, MTAP deficiency was associated with shortened survival in IDH-mutant astrocytomas (n=75; median survival 61 vs 137 months; p<0.0001), IDH-mutant oligodendrogliomas (n=59; median survival 41 vs 147 months; p<0.0001) and IDH-wild-type gliomas (n=117; median survival 13 vs 16 months; p=0.011). In conclusion, MTAP immunostaining is an important complement for diagnostic work-up of gliomas, because of its excellent correlation with CDKN2A/B status, robustness, rapid turnaround time and low costs, and provides significant prognostic value in IDH-mutant astrocytomas and oligodendrogliomas, while p16 should be used cautiously.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Oligodendroglioma , Humanos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Homocigoto , Variaciones en el Número de Copia de ADN , Eliminación de Secuencia , Eliminación de Gen , Glioma/diagnóstico , Glioma/genética , Biomarcadores , Fosforilasas/genética , Astrocitoma/diagnóstico , Astrocitoma/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Isocitrato Deshidrogenasa/genética , Mutación
6.
Neurooncol Adv ; 5(1): vdad001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875625

RESUMEN

Background: 2-hydroxy-glutarate (2HG) is a metabolite that accumulates in isocitrate dehydrogenase (IDH)-mutated gliomas and can be detected noninvasively using MR spectroscopy. However, due to the low concentration of 2HG, established magnetic resonance spectroscopic imaging (MRSI) techniques at the low field have limitations with respect to signal-to-noise and to the spatial resolution that can be obtained within clinically acceptable measurement times. Recently a tailored editing method for 2HG detection at 7 Tesla (7 T) named SLOW-EPSI was developed. The underlying prospective study aimed to compare SLOW-EPSI to established techniques at 7 T and 3 T for IDH-mutation status determination. Methods: The applied sequences were MEGA-SVS and MEGA-CSI at both field strengths and SLOW-EPSI at 7 T only. Measurements were performed on a MAGNETOM-Terra 7 T MR-scanner in clinical mode using a Nova 1Tx32Rx head coil and on a 3 T MAGNETOM-Prisma scanner with a standard 32-channel head coil. Results: Fourteen patients with suspected glioma were enrolled. Histopathological confirmation was available in 12 patients. IDH mutation was confirmed in 9 out of 12 cases and 3 cases were characterized as IDH wildtype. SLOW-EPSI at 7 T showed the highest accuracy for IDH-status prediction (91.7% accuracy, 11 of the 12 predictions correct with 1 false negative case). At 7 T, MEGA-CSI had an accuracy of 58.3% and MEGA-SVS had an accuracy of 75%. At 3 T, MEGA-CSI showed an accuracy of 63.6% and MEGA-SVS of 33.3%. The co-edited cystathionine was detected in 2 out of 3 oligodendroglioma cases with 1p/19q codeletion. Conclusions: Depending on the pulse sequence, spectral editing can be a powerful tool for the noninvasive determination of the IDH status. SLOW-editing EPSI sequence is the preferable pulse sequence when used at 7 T for IDH-status characterization.

7.
J Biomed Opt ; 28(10): 102908, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37705930

RESUMEN

Significance: Imaging Mueller polarimetry is capable to trace in-plane orientation of brain fiber tracts by detecting the optical anisotropy of white matter of healthy brain. Brain tumor cells grow chaotically and destroy this anisotropy. Hence, the drop in scalar retardance values and randomization of the azimuth of the optical axis could serve as the optical marker for brain tumor zone delineation. Aim: The presence of underlying crossing fibers can also affect the values of scalar retardance and the azimuth of the optical axis. We studied and analyzed the impact of fiber crossing on the polarimetric images of thin histological sections of brain corpus callosum. Approach: We used the transmission Mueller microscope for imaging of two-layered stacks of thin sections of corpus callosum tissue to mimic the overlapping brain fiber tracts with different fiber orientations. The decomposition of the measured Mueller matrices was performed with differential and Lu-Chipman algorithms and completed by the statistical analysis of the maps of scalar retardance, azimuth of the optical axis, and depolarization. Results: Our results indicate the sensitivity of Mueller polarimetry to different spatial arrangement of brain fiber tracts as seen in the maps of scalar retardance and azimuth of optical axis of two-layered stacks of corpus callosum sections The depolarization varies slightly (<15%) with the orientation of the optical axes in both corpus callosum stripes, but its value increases by 2.5 to 3 times with the stack thickness. Conclusions: The crossing brain fiber tracts measured in transmission induce the drop in values of scalar retardance and randomization of the azimuth of the optical axis at optical path length of 15 µm. It suggests that the presence of nerve fibers crossing within the depth of few microns will be also detected in polarimetric maps of brain white matter measured in reflection configuration.


Asunto(s)
Neoplasias Encefálicas , Cuerpo Calloso , Humanos , Cuerpo Calloso/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Análisis Espectral , Neoplasias Encefálicas/diagnóstico por imagen , Algoritmos
8.
Neurophotonics ; 10(2): 025009, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37234458

RESUMEN

Significance: Imaging Mueller polarimetry (IMP) appears as a promising technique for real-time delineation of healthy and neoplastic tissue during neurosurgery. The training of machine learning algorithms used for the image post-processing requires large data sets typically derived from the measurements of formalin-fixed brain sections. However, the success of the transfer of such algorithms from fixed to fresh brain tissue depends on the degree of alterations of polarimetric properties induced by formalin fixation (FF). Aim: Comprehensive studies were performed on the FF induced changes in fresh pig brain tissue polarimetric properties. Approach: Polarimetric properties of pig brain were assessed in 30 coronal thick sections before and after FF using a wide-field IMP system. The width of the uncertainty region between gray and white matter was also estimated. Results: The depolarization increased by 5% in gray matter and remained constant in white matter following FF, whereas the linear retardance decreased by 27% in gray matter and by 28% in white matter after FF. The visual contrast between gray and white matter and fiber tracking remained preserved after FF. Tissue shrinkage induced by FF did not have a significant effect on the uncertainty region width. Conclusions: Similar polarimetric properties were observed in both fresh and fixed brain tissues, indicating a high potential for transfer learning.

9.
Biomed Opt Express ; 14(5): 2400-2415, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37206128

RESUMEN

During neurooncological surgery, the visual differentiation of healthy and diseased tissue is often challenging. Wide-field imaging Muller polarimetry (IMP) is a promising technique for tissue discrimination and in-plane brain fiber tracking in an interventional setup. However, the intraoperative implementation of IMP requires realizing imaging in the presence of remanent blood, and complex surface topography resulting from the use of an ultrasonic cavitation device. We report on the impact of both factors on the quality of polarimetric images of the surgical resection cavities reproduced in fresh animal cadaveric brains. The robustness of IMP is observed under adverse experimental conditions, suggesting a feasible translation of IMP for in vivo neurosurgical applications.

10.
Neuro Oncol ; 25(4): 662-673, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36124685

RESUMEN

BACKGROUND: Adult-type diffuse gliomas, CNS WHO grade 4 are the most aggressive primary brain tumors and represent a particular challenge for therapeutic intervention. METHODS: In a single-center retrospective study of matched pairs of initial and post-therapeutic glioma cases with a recurrence period greater than 1 year, we performed whole exome sequencing combined with mRNA and microRNA expression profiling to identify processes that are altered in recurrent gliomas. RESULTS: Mutational analysis of recurrent gliomas revealed early branching evolution in 75% of the patients. High plasticity was confirmed at the mRNA and miRNA levels. SBS1 signature was reduced and SBS11 was elevated, demonstrating the effect of alkylating agent therapy on the mutational landscape. There was no evidence for secondary genomic alterations driving therapy resistance. ALK7/ACVR1C and LTBP1 were upregulated, whereas LEFTY2 was downregulated, pointing towards enhanced Tumor Growth Factor ß (TGF-ß) signaling in recurrent gliomas. Consistently, altered microRNA expression profiles pointed towards enhanced Nuclear Factor Kappa B and Wnt signaling that, cooperatively with TGF-ß, induces epithelial to mesenchymal transition (EMT), migration, and stemness. TGF-ß-induced expression of pro-apoptotic proteins and repression of antiapoptotic proteins were uncoupled in the recurrent tumor. CONCLUSIONS: Our results suggest an important role of TGF-ß signaling in recurrent gliomas. This may have clinical implications since TGF-ß inhibitors have entered clinical phase studies and may potentially be used in combination therapy to interfere with chemoradiation resistance. Recurrent gliomas show high incidence of early branching evolution. High tumor plasticity is confirmed at the level of microRNA and mRNA expression profiles.


Asunto(s)
Neoplasias Encefálicas , Glioma , MicroARNs , Humanos , Adulto , Regulación hacia Arriba , Transición Epitelial-Mesenquimal/genética , Estudios Retrospectivos , Glioma/patología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , MicroARNs/genética , Recurrencia , ARN Mensajero/metabolismo , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo
11.
Neuro Oncol ; 25(7): 1286-1298, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-36734226

RESUMEN

BACKGROUND: A methylation-based classification of ependymoma has recently found broad application. However, the diagnostic advantage and implications for treatment decisions remain unclear. Here, we retrospectively evaluate the impact of surgery and radiotherapy on outcome after molecular reclassification of adult intracranial ependymomas. METHODS: Tumors diagnosed as intracranial ependymomas from 170 adult patients collected from 8 diagnostic institutions were subjected to DNA methylation profiling. Molecular classes, patient characteristics, and treatment were correlated with progression-free survival (PFS). RESULTS: The classifier indicated an ependymal tumor in 73.5%, a different tumor entity in 10.6%, and non-classifiable tumors in 15.9% of cases, respectively. The most prevalent molecular classes were posterior fossa ependymoma group B (EPN-PFB, 32.9%), posterior fossa subependymoma (PF-SE, 25.9%), and supratentorial ZFTA fusion-positive ependymoma (EPN-ZFTA, 11.2%). With a median follow-up of 60.0 months, the 5- and 10-year-PFS rates were 64.5% and 41.8% for EPN-PFB, 67.4% and 45.2% for PF-SE, and 60.3% and 60.3% for EPN-ZFTA. In EPN-PFB, but not in other molecular classes, gross total resection (GTR) (P = .009) and postoperative radiotherapy (P = .007) were significantly associated with improved PFS in multivariable analysis. Histological tumor grading (WHO 2 vs. 3) was not a predictor of the prognosis within molecularly defined ependymoma classes. CONCLUSIONS: DNA methylation profiling improves diagnostic accuracy and risk stratification in adult intracranial ependymoma. The molecular class of PF-SE is unexpectedly prevalent among adult tumors with ependymoma histology and relapsed as frequently as EPN-PFB, despite the supposed benign nature. GTR and radiotherapy may represent key factors in determining the outcome of EPN-PFB patients.


Asunto(s)
Neoplasias Encefálicas , Ependimoma , Adulto , Humanos , Estudios Retrospectivos , Metilación de ADN , Pronóstico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Ependimoma/diagnóstico , Ependimoma/genética , Ependimoma/terapia
12.
Free Neuropathol ; 32022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37284159

RESUMEN

Confocal laser endomicroscopy (CLE) represents a new non-invasive in vivo imaging technique that holds considerable promise in neurosurgery and neuropathology. CLE is based on the principle of optical sectioning which uses pinholes placed in the light path to selectively image photons of a specific focal plane by filtering out photons above and below the focal plane. Potential indications of CLE in neurosurgery and neuropathology include intraoperative tumor diagnosis and staging as well as assessment of tumor resection margins notably in the case of diffusely infiltrating gliomas. CLE-based tumor analysis in near-real time may also have a significant impact on future tumor resection strategies. We here discuss the technical features of CLE, its potential for wide-field imaging, its role in comparison to established histological techniques for intraoperative tumor assessment and its position in digital pathology and telepathology. Based on our group's experience with a commercially available confocal laser endomicroscope (ZEISS CONVIVO), we critically address the current state of intraoperative CLE in brain tumor surgery, the applicability of classical histological criteria and the strategies required to further improve the diagnostic accuracy of CLE. We finally discuss how a widespread use of CLE in neurosurgery may modify the role of neuropathologists in intraoperative consultation, generating both new opportunities and new challenges.

13.
Biomedicines ; 10(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36359331

RESUMEN

The selection of an appropriate animal model is key to the production of results with optimal relevance to human disease. Particularly in the case of perinatal brain injury, a dearth of affected human neonatal tissue available for research purposes increases the reliance on animal models for insight into disease mechanisms. Improvements in obstetric and neonatal care in the past 20 years have caused the pathologic hallmarks of perinatal white matter injury (WMI) to evolve away from cystic necrotic lesions and toward diffuse regions of reactive gliosis and persistent myelin disruption. Therefore, updated animal models are needed that recapitulate the key features of contemporary disease. Here, we report a murine model of acute diffuse perinatal WMI induced through a two-hit inflammatory-hypoxic injury paradigm. Consistent with diffuse human perinatal white matter injury (dWMI), our model did not show the formation of cystic lesions. Corresponding to cellular outcomes of dWMI, our injury protocol produced reactive microgliosis and astrogliosis, disrupted oligodendrocyte maturation, and disrupted myelination.. Functionally, we observed sensorimotor and cognitive deficits in affected mice. In conclusion, we report a novel murine model of dWMI that induces a pattern of brain injury mirroring multiple key aspects of the contemporary human clinical disease scenario.

14.
Oper Neurosurg (Hagerstown) ; 18(1): 41-46, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31058980

RESUMEN

BACKGROUND: Several studies have proven the benefit of a greater extent of resection on progression-free survival and overall survival in glioblastoma (GBM). Possible reasons for incomplete tumor resection might be wrong interpretation of fading fluorescence or overseen fluorescent tumor tissue by a lacking line of sight between tumor tissue and the microscope. OBJECTIVE: To evaluate if an endoscope being capable of inducing fluorescence might overcome some limitations of microscopic fluorescence-guided (FG) resection. METHODS: 5-Aminolevulinic acid (20 mg/kg) was given 4 h before surgery. Microsurgical resection of all fluorescent tissue was performed. Then, the resection cavity was scanned with the endoscope. Fluorescent tissue, not being visualized by the microscope, was additionally removed and histopathologically examined separately. Neuronavigation was used for defining the sites of additional tumor resection. All patients underwent magnetic resonance imaging within 48 h after surgery. RESULTS: Twenty patients with GBM were operated using microscopic and endoscopic FG resection. In all patients, additional fluorescent tissue was detected with the endoscope. This tissue was completely resected in 19 patients (95%). Eloquent localization precluded complete resection in the remaining patient. In 19 patients (95%), histopathological examination confirmed tumor in the additionally resected tissue. In 19 patients (95%), complete resection was confirmed. In all patients, endoscopic FG resection reached beyond the borders of contrast-enhancing tumor. CONCLUSION: Endoscopic FG resection of GBM allows increasing the complete resection rate substantially and therefore is a useful adjunct to microscopic FG resection.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Glioblastoma/diagnóstico por imagen , Glioblastoma/cirugía , Neuroendoscopía/métodos , Neuronavegación/métodos , Anciano , Ácido Aminolevulínico/administración & dosificación , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/patología , Femenino , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Neuroendoscopios , Neuroendoscopía/instrumentación , Neuronavegación/instrumentación , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA