Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 108(12): 127002, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22540617

RESUMEN

We have observed long-range spin-triplet supercurrents in Josephson junctions containing ferromagnetic (F) materials, which are generated by noncollinear magnetizations between a central Co/Ru/Co synthetic antiferromagnet and two outer thin F layers. Here we show that the spin-triplet supercurrent is enhanced up to 20 times after our samples are subject to a large in-plane field. This occurs because the synthetic antiferromagnet undergoes a "spin-flop" transition, whereby the two Co layer magnetizations end up nearly perpendicular to the magnetizations of the two thin F layers. We report direct experimental evidence for the spin-flop transition from scanning electron microscopy with polarization analysis and from spin-polarized neutron reflectometry. These results represent a first step toward experimental control of spin-triplet supercurrents.

2.
J Appl Crystallogr ; 55(Pt 4): 787-812, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35974720

RESUMEN

In the analysis of neutron scattering measurements of condensed matter structure, it normally suffices to treat the incident and scattered neutron beams as if composed of incoherent distributions of plane waves with wavevectors of different magnitudes and directions that are taken to define an instrumental resolution. However, despite the wide-ranging applicability of this conventional treatment, there are cases, such as specular neutron reflectometry, in which the structural length scales of the scattering object require that the wavefunction of an individual neutron in the beam be described by a spatially localized packet - in particular with respect to the transverse extent of its wavefronts (i.e. normal to the packet's mean direction of propagation). It is shown in the present work that neutron diffraction patterns observed for periodic transmission phase gratings, as well as specular reflection measurements from patterned thin films with repeat units of the order of micrometres, can be accurately described by associating an individual neutron with a wave packet and treating a beam as a collection of independent packets. In these cases, accurate analysis requires that the transverse spatial extent of a neutron packet wavefront be accounted for in addition to the angular divergence of the beam that is characterized by a distribution of packet mean wavevector directions. It is shown how a measure of the effective transverse spatial extent of the neutron packet - over which its wavefronts are of sufficient uniformity to produce coherent scattering - can be determined by employing reference diffraction gratings and patterned thin films of known structure and composition.

3.
Phys Rev Lett ; 107(16): 167202, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22107423

RESUMEN

We demonstrate that delta doping can be used to create a dimensionally confined region of metallic ferromagnetism in an antiferromagnetic (AFM) manganite host, without introducing any explicit disorder due to dopants or frustration of spins. Theoretical consideration of these additional carriers shows that they cause a local enhancement of ferromagnetic double exchange with respect to AFM superexchange, resulting in local canting of the AFM spins. This leads to a highly modulated magnetization, as measured by polarized neutron reflectometry. The spatial modulation of the canting is related to the spreading of charge from the doped layer and establishes a fundamental length scale for charge transfer, transformation of orbital occupancy, and magnetic order in these manganites. Furthermore, we confirm the existence of the canted, AFM state as was predicted by de Gennes [Phys. Rev. 118, 141 (1960)] but had remained elusive.

4.
J Chem Phys ; 133(7): 074902, 2010 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-20726666

RESUMEN

Due to low charge carrier mobilities in polymer-based solar cells, device performance is dictated by the nanoscale morphology of the active layer components. However, their morphological details are notoriously difficult to distinguish due to the low electron contrast difference between the components. Phase-sensitive neutron reflectivity (PSNR) is uniquely suited to characterize these systems due to the large, natural scattering length density difference between two common device materials, poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Using PSNR we find a high concentration of PCBM at the substrate and near but not at the air interface. Herein we discuss the method of applying PSNR to polymer-based solar cells, the results obtained, and an evaluation of its effectiveness.

5.
Rev Sci Instrum ; 79(6): 063901, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18601411

RESUMEN

Spin echo scattering angle measurement (SESAME) is a sensitive interference technique for measuring neutron diffraction. The method uses waveplates or birefringent prisms to produce a phase separation (the Larmor phase) between the "up" and "down" spin components of a neutron wavefunction that is initially prepared in a state that is a linear combination of in-phase up and down components. For neutrons, uniformly birefringent optical elements can be constructed from closed solenoids with appropriately shaped cross sections. Such elements are inconvenient in practice, however, both because of the precision they demand in the control of magnetic fields outside the elements and because of the amount of material required in the neutron beam. In this paper, we explore a different option in which triangular-cross-section solenoids used to create magnetic fields for SESAME have gaps in one face, allowing the lines of magnetic flux to "leak out" of the solenoid. Although the resulting field inhomogeneity produces aberrations in the Larmor phase, the symmetry of the solenoid gaps causes the aberrations produced by neighboring pairs of triangular solenoids to cancel to a significant extent. The overall symmetry of the SESAME apparatus leads to further cancellations of aberrations, providing an architecture that is easy to construct and robust in performance.

6.
Rev Sci Instrum ; 85(5): 053303, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24880360

RESUMEN

A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ~30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ~98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 µm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

7.
J Phys Condens Matter ; 22(14): 146002, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21389536

RESUMEN

The length scale of the local chemical anisotropy responsible for the growth-temperature-induced perpendicular magnetic anisotropy of face-centered cubic CoPt(3) alloy films was investigated using polarized extended x-ray absorption fine structure (EXAFS). These x-ray measurements were performed on a series of four (111) CoPt(3) films epitaxially grown on (0001) sapphire substrates. The EXAFS data show a preference for Co-Co pairs parallel to the film plane when the film exhibits magnetic anisotropy, and random chemical order otherwise. Furthermore, atomic pair correlation anisotropy was evidenced only in the EXAFS signal from the next neighbors to the absorbing Co atoms and from multiple scattering paths focused through the next neighbors. This suggests that the Co clusters are no more than a few atoms in extent in the plane and one monolayer in extent out of the plane. Our EXAFS results confirm the correlation between perpendicular magnetic anisotropy and two-dimensional Co segregation in CoPt(3) alloy films, and establish a length scale on the order of 10 Å for the Co clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA