Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Biol Evol ; 39(5)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35535508

RESUMEN

In bony vertebrates, skeletal mineralization relies on the secretory calcium-binding phosphoproteins (Scpp) family whose members are acidic extracellular proteins posttranslationally regulated by the Fam20°C kinase. As scpp genes are absent from the elephant shark genome, they are currently thought to be specific to bony fishes (osteichthyans). Here, we report a scpp gene present in elasmobranchs (sharks and rays) that evolved from local tandem duplication of sparc-L 5' exons and show that both genes experienced recent gene conversion in sharks. The elasmobranch scpp is remarkably similar to the osteichthyan scpp members as they share syntenic and gene structure features, code for a conserved signal peptide, tyrosine-rich and aspartate/glutamate-rich regions, and harbor putative Fam20°C phosphorylation sites. In addition, the catshark scpp is coexpressed with sparc-L and fam20°C in tooth and scale ameloblasts, similarly to some osteichthyan scpp genes. Despite these strong similarities, molecular clock and phylogenetic data demonstrate that the elasmobranch scpp gene originated independently from the osteichthyan scpp gene family. Our study reveals convergent events at the sparc-L locus in the two sister clades of jawed vertebrates, leading to parallel diversification of the skeletal biomineralization toolkit. The molecular evolution of sparc-L and its coexpression with fam20°C in catshark ameloblasts provides a unifying genetic basis that suggests that all convergent scpp duplicates inherited similar features from their sparc-L precursor. This conclusion supports a single origin for the hypermineralized outer odontode layer as produced by an ancestral developmental process performed by Sparc-L, implying the homology of the enamel and enameloid tissues in all vertebrates.


Asunto(s)
Ameloblastos , Tiburones , Animales , Proteínas de Unión al Calcio/genética , Evolución Molecular , Filogenia , Tiburones/genética , Vertebrados/genética
2.
Development ; 145(22)2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30297374

RESUMEN

Ric-8A is a pleiotropic guanine nucleotide exchange factor involved in the activation of various heterotrimeric G-protein pathways during adulthood and early development. Here, we sought to determine the downstream effectors of Ric-8A during the migration of the vertebrate cranial neural crest (NC) cells. We show that the Gα13 knockdown phenocopies the Ric-8A morphant condition, causing actin cytoskeleton alteration, protrusion instability, and a strong reduction in the number and dynamics of focal adhesions. In addition, the overexpression of Gα13 is sufficient to rescue Ric-8A-depleted cells. Ric-8A and Gα13 physically interact and colocalize in protrusions of the cells leading edge. The focal adhesion kinase FAK colocalizes and interacts with the endogenous Gα13, and a constitutively active form of Src efficiently rescues the Gα13 morphant phenotype in NC cells. We propose that Ric-8A-mediated Gα13 signalling is required for proper cranial NC cell migration by regulating focal adhesion dynamics and protrusion formation.


Asunto(s)
Movimiento Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Adhesiones Focales/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Cresta Neural/citología , Transducción de Señal , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Adhesiones Focales/efectos de los fármacos , Modelos Biológicos , Morfolinos/farmacología , Cresta Neural/metabolismo , Fenotipo , Transducción de Señal/efectos de los fármacos , Xenopus/embriología , Familia-src Quinasas/metabolismo
3.
Mol Biol Evol ; 36(10): 2265-2276, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31270539

RESUMEN

In order to characterize the molecular bases of mineralizing cell evolution, we targeted type X collagen, a nonfibrillar network forming collagen encoded by the Col10a1 gene. It is involved in the process of endochondral ossification in ray-finned fishes and tetrapods (Osteichthyes), but until now unknown in cartilaginous fishes (Chondrichthyes). We show that holocephalans and elasmobranchs have respectively five and six tandemly duplicated Col10a1 gene copies that display conserved genomic synteny with osteichthyan Col10a1 genes. All Col10a1 genes in the catshark Scyliorhinus canicula are expressed in ameloblasts and/or odontoblasts of teeth and scales, during the stages of extracellular matrix protein secretion and mineralization. Only one duplicate is expressed in the endoskeletal (vertebral) mineralizing tissues. We also show that the expression of type X collagen is present in teeth of two osteichthyans, the zebrafish Danio rerio and the western clawed frog Xenopus tropicalis, indicating an ancestral jawed vertebrate involvement of type X collagen in odontode formation. Our findings push the origin of Col10a1 gene prior to the divergence of osteichthyans and chondrichthyans, and demonstrate its ancestral association with mineralization of both the odontode skeleton and the endoskeleton.


Asunto(s)
Calcificación Fisiológica/genética , Colágeno Tipo X/genética , Elasmobranquios/genética , Animales , Colágeno Tipo X/metabolismo , Elasmobranquios/metabolismo , Duplicación de Gen , Filogenia , Sintenía
4.
BMC Evol Biol ; 18(1): 127, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30165817

RESUMEN

BACKGROUND: The molecular bases explaining the diversity of dental tissue mineralization across gnathostomes are still poorly understood. Odontodes, such as teeth and body denticles, are serial structures that develop through deployment of a gene regulatory network shared between all gnathostomes. Dentin, the inner odontode mineralized tissue, is produced by odontoblasts and appears well-conserved through evolution. In contrast, the odontode hypermineralized external layer (enamel or enameloid) produced by ameloblasts of epithelial origin, shows extensive structural variations. As EMP (Enamel Matrix Protein) genes are as yet only found in osteichthyans where they play a major role in the mineralization of teeth and others skeletal organs, our understanding of the molecular mechanisms leading to the mineralized odontode matrices in chondrichthyans remains virtually unknown. RESULTS: We undertook a phylogenetic analysis of the SPARC/SPARC-L gene family, from which the EMPs are supposed to have arisen, and examined the expression patterns of its members and of major fibrillar collagens in the spotted catshark Scyliorhinus canicula, the thornback ray Raja clavata, and the clawed frog Xenopus tropicalis. Our phylogenetic analyses reveal that the single chondrichthyan SPARC-L gene is co-orthologous to the osteichthyan SPARC-L1 and SPARC-L2 paralogues. In all three species, odontoblasts co-express SPARC and collagens. In contrast, ameloblasts do not strongly express collagen genes but exhibit strikingly similar SPARC-L and EMP expression patterns at their maturation stage, in the examined chondrichthyan and osteichthyan species, respectively. CONCLUSIONS: A well-conserved odontoblastic collagen/SPARC module across gnathostomes further confirms dentin homology. Members of the SPARC-L clade evolved faster than their SPARC paralogues, both in terms of protein sequence and gene duplication. We uncover an osteichthyan-specific duplication that produced SPARC-L1 (subsequently lost in pipidae frogs) and SPARC-L2 (independently lost in teleosts and tetrapods).Our results suggest the ameloblastic expression of the single chondrichthyan SPARC-L gene at the maturation stage reflects the ancestral gnathostome situation, and provide new evidence in favor of the homology of enamel and enameloids in all gnathostomes.


Asunto(s)
Evolución Biológica , Maxilares/anatomía & histología , Minerales/metabolismo , Osteonectina/metabolismo , Diente/metabolismo , Vertebrados/anatomía & histología , Animales , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Esmalte Dental/metabolismo , Regulación del Desarrollo de la Expresión Génica , Osteonectina/genética , Filogenia , Diente/embriología , Vertebrados/genética
5.
J Appl Toxicol ; 38(4): 437-449, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29277905

RESUMEN

Despite intensive media coverage and international regulations, man-made persistent organic pollutants such as dioxins represent a serious environmental and health threat. Their detection by sophisticated chromatography technologies is highly complex, impeding the constant monitoring of food or environmental samples. This limitation has fostered the development of generations of bioassays exploiting the molecular function of the aryl hydrocarbon receptor (AhR), which binds toxic compounds and directly activates the transcription of target genes. Here, we review the rich panel of available AhR-dependent bioassays and propose a novel classification based on the source of AhR, which can either be endogenously produced by cell types or tissues naturally responsive to dioxins, or exogenously introduced into a wide range of cellular contexts. In both cases, in vitro and in vivo strategies have been engineered to monitor the formation of molecular complexes, and the activation of direct downstream targets or reporter genes. We evaluate and compare bioassays based on exogenous and endogenous AhR proteins and discuss their specific challenges, strengths and opportunities for futures applications. Undoubtedly, the dynamic field of AhR-dependent bioassays will keep providing new and original strategies to help protect human health and ecosystems from persistent organic pollutants.


Asunto(s)
Bioensayo/métodos , Dioxinas/análisis , Receptores de Hidrocarburo de Aril/metabolismo , Contaminantes Químicos del Agua/análisis , Animales , Humanos
6.
Dev Genes Evol ; 227(2): 121-127, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27909803

RESUMEN

The vertebrate endoskeleton results from the piecemeal assembly of bone and cartilage as well as additional types of calcified extracellular matrices produced by seemingly hybrid cell types of intermediate phenotypes between osteoblasts and chondrocytes. Hence, shedding light on the emergence and subsequent diversification of skeletal tissues represents a major challenge in vertebrate evolutionary developmental biology. A 150-year-old debate in the field was recently solved by lineage tracing experiments demonstrating that, during mouse endochondral bone development, a subset of chondrocytes evades apoptosis and transdifferentiates into osteoblasts at the chondro-osseous junction. Here, we interpret these new data from a broad phylogenetic perspective, integrating fossil, histological, cellular, and genetic evidence from a wide range of vertebrates. We propose a testable scenario according to which transdifferentiation played a fundamental role in the emergence of endochondral ossification, an osteichthyan-specific evolutionary novelty. The remarkable skeletal cell plasticity might be contingent on the similar architectures of the osteoblastic and chondrocytic gene regulatory networks, thereby providing a unifying mechanism underlying both complete transdifferentiation as well as partial cell type conversions observed in intermediate skeletal tissues such as the chondroid bone or globuli ossei.


Asunto(s)
Transdiferenciación Celular , Evolución Molecular , Osteogénesis/genética , Animales , Condrocitos/citología , Osteoblastos/citología
7.
J Exp Zool B Mol Dev Evol ; 328(1-2): 5-40, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27491339

RESUMEN

Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.


Asunto(s)
Evolución Biológica , Biología Evolutiva , Investigación , Animales , América Latina
8.
J Exp Zool B Mol Dev Evol ; 326(5): 280-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27381191

RESUMEN

The formation of the complex osteocytic network relies on the emission of long cellular processes involved in communication, mechanical strain sensing, and bone turnover control. Newly deposited osteocytic processes rapidly become trapped within the calcifying matrix, and, therefore, they must adopt their definitive conformation and contact their targets in a single morphogenetic event. However, the cellular mechanisms ensuring the robustness of this unique mode of morphogenesis remain unknown. To address this issue, we examined the developing calvaria of the amphibian Xenopus tropicalis by confocal, two-photon, and super-resolution imaging, and described flattened osteocytes lying within a woven bone structured in lamellae of randomly oriented collagen fibers. While most cells emit peripheral and perpendicular processes, we report two osteocytes morphotypes, located at different depth within the bone matrix and exhibiting distinct number and orientation of perpendicular cell processes. We show that this pattern is conserved with the chick Gallus gallus and suggest that the cellular microenvironment, and more particularly cell-cell contact, plays a fundamental role in the induction and stabilization of osteocytic processes. We propose that this intrinsic property might have been evolutionarily selected for its ability to robustly generate self-organizing osteocytic networks harbored by the wide variety of bone shapes and architectures found in extant and extinct vertebrates.


Asunto(s)
Osteocitos/fisiología , Xenopus/crecimiento & desarrollo , Animales , Matriz Ósea/anatomía & histología , Matriz Ósea/ultraestructura , Diferenciación Celular , Pollos/crecimiento & desarrollo , Colágeno/ultraestructura , Larva/crecimiento & desarrollo , Osteocitos/citología , Cráneo/crecimiento & desarrollo , Cráneo/fisiología
9.
Histochem Cell Biol ; 143(4): 431-42, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25371327

RESUMEN

Osteogenesis is the fundamental process by which bones are formed, maintained and regenerated. The osteoblasts deposit the bone mineralized matrix by secreting large amounts of extracellular proteins and by allowing the biochemical conditions for the nucleation of hydroxyapatite crystals. Normal bone formation requires a tight control of osteoblastic activity, and therefore, osteoblasts represent a major focus of interest in biomedical research. Several crucial features of osteogenesis can be readily recapitulated using murine, avian and fish primary and immortalized osteoblastic cultures. Here, we describe a novel and straightforward in vitro culture of primary osteoblasts from the amphibian Xenopus tropicalis, a major vertebrate model organism. X. tropicalis osteoblasts can readily be extracted from the frontoparietal bone of pre-metamorphosing tadpole skulls by series of gentle protease treatments. Such primary cultures efficiently proliferate and can conveniently be grown at room temperature, in the absence of CO2, on a variety of substrates. X. tropicalis primary osteoblasts express well-characterized genes known to be active during osteogenesis of teleost fish, chick, mouse and human. Upon differentiation, such cultures mineralize and activate DMP1, an osteocyte-specific gene. Importantly, X. tropicalis primary osteoblasts can be efficiently transfected and respond to the forced activation of the bone morphogenetic protein pathway by increasing their nuclear levels of phospho-Smad. Therefore, this novel primary culture is amenable to experimental manipulations and represents a valuable tool for improving our understanding of the complex network of molecular interactions that govern vertebrate bone formation.


Asunto(s)
Osteoblastos/fisiología , Osteogénesis , Hueso Parietal/fisiología , Xenopus/fisiología , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Diferenciación Celular , Separación Celular , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Larva/citología , Larva/fisiología , Osteogénesis/genética , Hueso Parietal/embriología , Fosforilación , Cultivo Primario de Células , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factores de Tiempo , Transfección , Xenopus/embriología , Xenopus/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
10.
Dev Biol ; 378(2): 74-82, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23588098

RESUMEN

The neural crest (NC) is a transient embryonic structure induced at the border of the neural plate. NC cells extensively migrate towards diverse regions of the embryo, where they differentiate into various derivatives, including most of the craniofacial skeleton and the peripheral nervous system. The Ric-8A protein acts as a guanine nucleotide exchange factor for several Gα subunits, and thus behaves as an activator of signaling pathways mediated by heterotrimeric G proteins. Using in vivo transplantation assays, we demonstrate that Ric-8A levels are critical for the migration of cranial NC cells and their subsequent differentiation into craniofacial cartilage during Xenopus development. NC cells explanted from Ric-8A morphant embryos are unable to migrate directionally towards a source of the Sdf1 peptide, a potent chemoattractant for NC cells. Consistently, Ric-8A knock-down showed anomalous radial migratory behavior, displaying a strong reduction in cell spreading and focal adhesion formation. We further show that during in vivo and in vitro neural crest migration, Ric-8A localizes to the cell membrane, in agreement with its role as a G protein activator. We propose that Ric-8A plays essential roles during the migration of cranial NC cells, possibly by regulating cell adhesion and spreading.


Asunto(s)
Movimiento Celular , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Cresta Neural/citología , Proteínas de Xenopus/metabolismo , Animales , Adhesión Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Factores de Intercambio de Guanina Nucleótido/genética , Hibridación in Situ , Microscopía Confocal , Cresta Neural/embriología , Cresta Neural/metabolismo , Transducción de Señal/genética , Cráneo/embriología , Cráneo/inervación , Imagen de Lapso de Tiempo/métodos , Xenopus/embriología , Proteínas de Xenopus/genética , Xenopus laevis/embriología
11.
Bioessays ; 34(11): 953-62, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22930599

RESUMEN

Although many regulators of skeletogenesis have been functionally characterized, one current challenge is to integrate this information into regulatory networks. Here, we discuss how the canonical Wnt and Smad-dependent BMP pathways interact together and play antagonistic or cooperative roles at different steps of osteogenesis, in the context of the developing vertebrate embryo. Early on, BMP signaling specifies multipotent mesenchymal cells into osteochondroprogenitors. In turn, the function of Wnt signaling is to drive these osteochondroprogenitors towards an osteoblastic fate. Subsequently, both pathways promote osteoblast differentiation, albeit with notable mechanistic differences. In osteocytes, the ultimate stage of osteogenic differentiation, the Wnt and BMP pathways exert opposite effects on the control of bone resorption by osteoclasts. We describe how the dynamic molecular wiring of the canonical Wnt and Smad-dependent BMP signaling into the skeletal cell genetic programme is critical for the generation of bone-specific cell types during development.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Condrocitos/citología , Osteocitos/citología , Osteocitos/metabolismo , Osteogénesis , Vía de Señalización Wnt , Animales , Condrocitos/metabolismo , Humanos
12.
Cells Dev ; : 203924, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38692409

RESUMEN

While understanding the genetic underpinnings of osteogenesis has far-reaching implications for skeletal diseases and evolution, a comprehensive characterization of the osteoblastic regulatory landscape in non-mammalian vertebrates is still lacking. Here, we compared the ATAC-Seq profile of Xenopus tropicalis (Xt) osteoblasts to a variety of non mineralizing control tissues, and identified osteoblast-specific nucleosome free regions (NFRs) at 527 promoters and 6747 distal regions. Sequence analyses, Gene Ontology, RNA-Seq and ChIP-Seq against four key histone marks confirmed that the distal regions correspond to bona fide osteogenic transcriptional enhancers exhibiting a shared regulatory logic with mammals. We report 425 regulatory regions conserved with human and globally associated to skeletogenic genes. Of these, 35 regions have been shown to impact human skeletal phenotypes by GWAS, including one trps1 enhancer and the runx2 promoter, two genes which are respectively involved in trichorhinophalangeal syndrome type I and cleidocranial dysplasia. Intriguingly, 60 osteoblastic NFRs also align to the genome of the elephant shark, a species lacking osteoblasts and bone tissue. To tackle this paradox, we chose to focus on dlx5 because its conserved promoter, known to integrate regulatory inputs during mammalian osteogenesis, harbours an osteoblast-specific NFR in both frog and human. Hence, we show that dlx5 is expressed in Xt and elephant shark odontoblasts, supporting a common cellular and genetic origin of bone and dentine. Taken together, our work (i) unravels the Xt osteogenic regulatory landscape, (ii) illustrates how cross-species comparisons harvest data relevant to human biology and (iii) reveals that a set of genes including bnc2, dlx5, ebf3, mir199a, nfia, runx2 and zfhx4 drove the development of a primitive form of mineralized skeletal tissue deep in the vertebrate lineage.

13.
Proc Biol Sci ; 280(1757): 20122963, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23446527

RESUMEN

The vertebrates share the ability to produce a skeleton made of mineralized extracellular matrix. However, our understanding of the molecular changes that accompanied their emergence remains scarce. Here, we describe the evolutionary history of the SPARC (secreted protein acidic and rich in cysteine) family, because its vertebrate orthologues are expressed in cartilage, bones and teeth where they have been proposed to bind calcium and act as extracellular collagen chaperones, and because further duplications of specific SPARC members produced the small calcium-binding phosphoproteins (SCPP) family that is crucial for skeletal mineralization to occur. Both phylogeny and synteny conservation analyses reveal that, in the eumetazoan ancestor, a unique ancestral gene duplicated to give rise to SPARC and SPARCB described here for the first time. Independent losses have eliminated one of the two paralogues in cnidarians, protostomes and tetrapods. Hence, only non-tetrapod deuterostomes have conserved both genes. Remarkably, SPARC and SPARCB paralogues are still linked in the amphioxus genome. To shed light on the evolution of the SPARC family members in chordates, we performed a comprehensive analysis of their embryonic expression patterns in amphioxus, tunicates, teleosts, amphibians and mammals. Our results show that in the chordate lineage SPARC and SPARCB family members were recurrently recruited in a variety of unrelated tissues expressing collagen genes. We propose that one of the earliest steps of skeletal evolution involved the co-expression of SPARC paralogues with collagenous proteins.


Asunto(s)
Calcificación Fisiológica/genética , Evolución Molecular , Duplicación de Gen , Osteonectina/química , Animales , Secuencia de Bases , Cordados/embriología , Cordados/genética , Cordados/metabolismo , Clonación Molecular , Secuencia Conservada , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Osteonectina/genética , Filogenia , Sintenía
14.
Histochem Cell Biol ; 139(6): 887-94, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23329419

RESUMEN

Vitamin C plays key roles in cell homeostasis, acting as a potent antioxidant as well as a positive modulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. Besides, SVCT2 is up-regulated upon the early fusion of primary myoblasts. However, our knowledge of the postnatal expression profile of SVCT2 remains scarce. Here we have analyzed the expression of SVCT2 during postnatal development of the chicken slow anterior and fast posterior latissimus dorsi muscles, ranging from day 7 to adulthood. SVCT2 expression is consistently higher in the slow than in the fast muscle at all stages. After hatching, SVCT2 expression is significantly down-regulated in the anterior latissimus dorsi, which nevertheless maintains a robust slow phenotype. Taking advantage of the C2C12 cell line to recapitulate myogenesis, we confirmed that SVCT2 is expressed in a biphasic fashion, reaching maximal levels upon early myoblasts fusion and decreasing during myotube growth. Together, these findings suggest that the dynamic expression levels of SVCT2 could be relevant for different features of skeletal muscle physiology, such as muscle cell formation, growth and activity.


Asunto(s)
Fibras Musculares de Contracción Lenta/metabolismo , Transportadores de Sodio Acoplados a la Vitamina C/metabolismo , Animales , Línea Celular , Pollos , Regulación hacia Abajo , Crecimiento y Desarrollo/fisiología
15.
J Exp Zool B Mol Dev Evol ; 320(6): 375-84, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23677533

RESUMEN

The emergence of vertebrates is closely associated to the evolution of mineralized bone tissue. However, the molecular basis underlying the origin and subsequent diversification of the skeletal mineralized matrix is still poorly understood. One efficient way to tackle this issue is to compare the expression, between vertebrate species, of osteoblastic genes coding for bone matrix proteins. In this work, we have focused on the evolution of the network forming collagen family which contains the Col8a1, Col8a2, and Col10a1 genes. Both phylogeny and synteny reveal that these three paralogues are vertebrate-specific and derive from two independent duplications in the vertebrate lineage. To shed light on the evolution of this family, we have analyzed the osteoblastic expression of the network forming collagens in endochondral and intramembraneous skeletal elements of the amphibian Xenopus tropicalis. Remarkably, we find that amphibian osteoblasts express Col10a1, a gene strongly expressed in osteoblasts in actinopterygians but not in amniotes. In addition, while Col8a1 is known to be robustly expressed in mammalian osteoblasts, the expression levels of its amphibian orthologue are dramatically reduced. Our work reveals that while a skeletal expression of network forming collagen members is widespread throughout vertebrates, osteoblasts from divergent vertebrate lineages express different combinations of network forming collagen paralogues.


Asunto(s)
Matriz Ósea/fisiología , Colágeno/fisiología , Evolución Molecular , Xenopus/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Colágeno/genética , Datos de Secuencia Molecular , Filogenia , ARN/química , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Xenopus/genética
16.
Front Genet ; 12: 788346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899866

RESUMEN

While cartilage is an ancient tissue found both in protostomes and deuterostomes, its mineralization evolved more recently, within the vertebrate lineage. SPARC, SPARC-L, and the SCPP members (Secretory Calcium-binding PhosphoProtein genes which evolved from SPARC-L) are major players of dentine and bone mineralization, but their involvement in the emergence of the vertebrate mineralized cartilage remains unclear. We performed in situ hybridization on mineralizing cartilaginous skeletal elements of the frog Xenopus tropicalis (Xt) and the shark Scyliorhinus canicula (Sc) to examine the expression of SPARC (present in both species), SPARC-L (present in Sc only) and the SCPP members (present in Xt only). We show that while mineralizing cartilage expresses SPARC (but not SPARC-L) in Sc, it expresses the SCPP genes (but not SPARC) in Xt, and propose two possible evolutionary scenarios to explain these opposite expression patterns. In spite of these genetic divergences, our data draw the attention on an overlooked and evolutionarily conserved peripheral cartilage subdomain expressing SPARC or the SCPP genes and exhibiting a high propensity to mineralize.

17.
Front Cell Dev Biol ; 9: 801652, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155449

RESUMEN

The vertebral column, or spine, provides mechanical support and determines body axis posture and motion. The most common malformation altering spine morphology and function is adolescent idiopathic scoliosis (AIS), a three-dimensional spinal deformity that affects approximately 4% of the population worldwide. Due to AIS genetic heterogenicity and the lack of suitable animal models for its study, the etiology of this condition remains unclear, thus limiting treatment options. We here review current advances in zebrafish phenogenetics concerning AIS-like models and highlight the recently discovered biological processes leading to spine malformations. First, we focus on gene functions and phenotypes controlling critical aspects of postembryonic aspects that prime in spine architecture development and straightening. Second, we summarize how primary cilia assembly and biomechanical stimulus transduction, cerebrospinal fluid components and flow driven by motile cilia have been implicated in the pathogenesis of AIS-like phenotypes. Third, we highlight the inflammatory responses associated with scoliosis. We finally discuss recent innovations and methodologies for morphometrically characterize and analyze the zebrafish spine. Ongoing phenotyping projects are expected to identify novel and unprecedented postembryonic gene functions controlling spine morphology and mutant models of AIS. Importantly, imaging and gene editing technologies are allowing deep phenotyping studies in the zebrafish, opening new experimental paradigms in the morphometric and three-dimensional assessment of spinal malformations. In the future, fully elucidating the phenogenetic underpinnings of AIS etiology in zebrafish and humans will undoubtedly lead to innovative pharmacological treatments against spinal deformities.

18.
BMC Evol Biol ; 10: 78, 2010 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-20236534

RESUMEN

BACKGROUND: The mineralized skeleton is a major evolutionary novelty that has contributed to the impressive morphological diversifications of the vertebrates. Essential to bone biology is the solidified extracellular matrix secreted by highly specialized cells, the osteoblasts. We now have a rather complete view of the events underlying osteogenesis, from a cellular, molecular, genetic, and epigenetic perspective. Because this knowledge is still largely restricted to mammals, it is difficult, if not impossible, to deduce the evolutionary history of the regulatory network involved in osteoblasts specification and differentiation. In this study, we focused on the transcriptional regulators Runx2 and VDR (the Vitamin D Receptor) that, in mammals, directly interact together and stabilize complexes of co-activators and chromatin remodellers, thereby allowing the transcriptional activation of target genes involved in extracellular matrix mineralization. Using a combination of functional, biochemical, and histological approaches, we have asked if the interaction observed between Runx2 and VDR represents a recent mammalian innovation, or if it results from more ancient changes that have occurred deep in the vertebrate lineage. RESULTS: Using immunohistochemistry and in situ hybridization in developing embryos of chick, frog and teleost fishes, we have revealed that the co-expression of Runx2 and VDR in skeletal elements has been particularly strengthened in the lineage leading to amniotes. We show that the teleost Runx2 orthologue as well as the three mammalian Runx1, Runx2 and Runx3 paralogues are able to co-immunoprecipitate with the VDR protein present in nuclear extracts of rat osteoblasts stimulated with 1alpha,25-dihydroxyvitamin D3. In addition, the teleost Runx2 can activate the transcription of the mammalian osteocalcin promoter in transfection experiments, and this response can be further enhanced by 1alpha,25-dihydroxyvitamin D3. Finally, using pull-down experiments between recombinant proteins, we show that the VDR homologue from teleosts, but not from ascidians, is able to directly interact with the mammalian Runx2 homologue. CONCLUSIONS: We propose an evolutionary scenario for the assembly of the molecular machinery involving Runx2 and VDR in vertebrates. In the last common ancestor of actinopterygians and sacropterygians, the three Runx paralogues possessed the potential to physically and functionally interact with the VDR protein. Therefore, 1alpha,25-dihydroxyvitamin D3 might have been able to modulate the transcriptional activity of Runx1, Runx2 or Runx3 in the tissues expressing VDR. After the split from amphibians, in the lineage leading to amniotes, Runx2 and VDR became robustly co-expressed in developing skeletal elements, and their regulatory interaction was incorporated in the genetic program involved in the specification and differentiation of osteoblasts.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Evolución Molecular , Osteogénesis , Receptores de Calcitriol/genética , Vertebrados/genética , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/citología , Receptores de Calcitriol/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vertebrados/embriología , Vertebrados/metabolismo
19.
Evol Dev ; 12(6): 541-51, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21040421

RESUMEN

The origin of bone and cartilage, and their subsequent diversification in specific vertebrate lineages, is intimately linked to the precise transcriptional control of genes involved in matrix mineralization. It is not yet clear, however, to which extent the osteoblasts, osteocytes, and chondrocytes of each of the major vertebrate groups express similar sets of genes. In this study we have focused on the evolution of two independent families of genes that code for extracellular matrix components of the skeleton and that include secreted protein, acidic, cysteine-rich (SPARC), bone sialoprotein (BSP) and dentin matrix protein 1 (DMP1) paralogues, and the osteocalcin (OC) and matrix gla protein (MGP) paralogues. Analyzing developing Xenopus tropicalis skeletal elements, we show that the expression patterns of these genes are well conserved with mammals. The fact that only a few osteoblasts express DMP1, while only some osteocytes express SPARC and BSP, reveals a significant degree of molecular heterogeneity for these two populations of X. tropicalis cells, similarly to what has been described in mouse. Although the cis-regulatory modules (CRM) of the mammalian OC, DMP1, and BSP orthologs have been functionally characterized, we found no evidence of sequence similarity between these regions and the X. tropicalis genome. Furthermore, these regulatory elements evolve rapidly, as they are only poorly conserved between human and rodents. Therefore, the SPARC/DMP1/BSP and the OC/MGP families provide a good paradigm to study how transcriptional output can be maintained in skeletal cells despite extensive sequence divergence of CRM.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Xenopus/genética , Animales , Huesos , Calcificación Fisiológica , Proteínas de Unión al Calcio/genética , Secuencia Conservada , Proteínas de la Matriz Extracelular/genética , Humanos , Hibridación in Situ , Sialoproteína de Unión a Integrina/genética , Mamíferos/genética , Ratones , Osteocalcina/genética , Osteonectina/genética , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Gla de la Matriz
20.
PLoS Biol ; 4(12): e386, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17105353

RESUMEN

Changes in cis-regulatory sequences are proposed to underlie much of morphological evolution. Yet, little is known about how such modifications translate into phenotypic differences. To address this problem, we focus on the dorsocentral bristles of Drosophilidae. In Drosophila melanogaster, development of these bristles depends on a cis-regulatory element, the dorsocentral enhancer, to activate scute in a cluster of cells from which two bristles on the posterior scutum arise. A few species however, such as D. quadrilineata, bear anterior dorsocentral bristles as well as posterior ones, a derived feature. This correlates with an anterior expansion of the scute expression domain. Here, we show that the D. quadrilineata enhancer has evolved, and is now active in more anterior regions. When used to rescue scute expression in transgenic D. melanogaster, the D. quadrilineata enhancer is able to induce anterior bristles. Importantly, these properties are not displayed by homologous enhancers from control species bearing only two posterior bristles. We also provide evidence that upstream regulation of the enhancer, by the GATA transcription factor Pannier, has been evolutionarily conserved. This work illustrates how, in the context of a conserved trans-regulatory landscape, evolutionary tinkering of pre-existing enhancers can modify gene expression patterns and contribute to morphological diversification.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophilidae/genética , Elementos de Facilitación Genéticos/genética , Factores de Transcripción/genética , Animales , Secuencia de Bases , Proteínas de Drosophila/fisiología , Drosophilidae/anatomía & histología , Evolución Molecular , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Fenotipo , Filogenia , Alineación de Secuencia , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA