Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunol Rev ; 313(1): 194-216, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36203396

RESUMEN

This review aimed to capture the key findings that animal models have provided around the role of the alternative pathway and amplification loop (AP/AL) in disease. Animal models, particularly mouse models, have been incredibly useful to define the role of complement and the alternative pathway in health and disease; for instance, the use of cobra venom factor and depletion of C3 provided the initial insight that complement was essential to generate an appropriate adaptive immune response. The development of knockout mice have further underlined the importance of the AP/AL in disease, with the FH knockout mouse paving the way for the first anti-complement drugs. The impact from the development of FB, properdin, and C3 knockout mice closely follows this in terms of mechanistic understanding in disease. Indeed, our current understanding that complement plays a role in most conditions at one level or another is rooted in many of these in vivo studies. That C3, in particular, has roles beyond the obvious in innate and adaptive immunity, normal physiology, and cellular functions, with or without other recognized AP components, we would argue, only extends the reach of this arm of the complement system. Humanized mouse models also continue to play their part. Here, we argue that the animal models developed over the last few decades have truly helped define the role of the AP/AL in disease.


Asunto(s)
Vía Alternativa del Complemento , Properdina , Animales , Ratones , Humanos , Properdina/metabolismo , Inmunidad Adaptativa , Ratones Noqueados , Modelos Animales de Enfermedad
2.
J Biol Chem ; : 107452, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38852887

RESUMEN

Rare variants (RVs) in the gene encoding the regulatory enzyme complement factor I (CFI; FI) that reduce protein function or levels increase age-related macular degeneration (AMD) risk. A total of 3357 subjects underwent screening in the SCOPE natural history study for Geographic Atrophy (GA) secondary to AMD, including CFI sequencing followed by serum FI measurement. Eleven CFI RV genotypes that were challenging to categorise as Type I (low serum level) or Type II (normal serum level but reduced enzymatic function) were characterized in the context of pure FI protein in C3b and C4b fluid phase cleavage assays and a novel bead-based functional assay (BBFA) of surface-bound C3b cleavage. A further 4 variants predicted or previously characterized as benign, were analysed using the BBFA to add confidence to their classification. In all, 3 variants [W51S, C67R, I370T] resulted in low expression. A further 4 variants [P64L, R339Q, G527V and P528T] were identified as being highly deleterious with IC50s for C3b breakdown >1 log increased vs the WT protein, while 2 variants [K476E and R474Q] were ∼1 log reduced in function. Meanwhile, 6 variants [P50A, T203I, K441R, E548Q, P553S, S570T] had IC50s similar to wild-type (WT). Odds ratios (ORs) and BBFA IC50s were positively correlated (r=0.76, P<0.01), whilst ORs vs combined annotation dependent depletion (CADD) scores were not (r=0.43, P=0.16). Overall, 15 CFI RVs were functionally characterized which may aid future patient stratification approaches for complement-targeted therapies. Pure protein in vitro analysis remains the gold standard for determining the functional consequence of CFI RVs.

3.
Blood ; 142(16): 1371-1386, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37369098

RESUMEN

Historically, the majority of patients with complement-mediated atypical hemolytic uremic syndrome (CaHUS) progress to end-stage kidney disease (ESKD). Single-arm trials of eculizumab with a short follow-up suggested efficacy. We prove, for the first time to our knowledge, in a genotype matched CaHUS cohort that the 5-year cumulative estimate of ESKD-free survival improved from 39.5% in a control cohort to 85.5% in the eculizumab-treated cohort (hazard ratio, 4.95; 95% confidence interval [CI], 2.75-8.90; P = .000; number needed to treat, 2.17 [95% CI, 1.81-2.73]). The outcome of eculizumab treatment is associated with the underlying genotype. Lower serum creatinine, lower platelet count, lower blood pressure, and younger age at presentation as well as shorter time between presentation and the first dose of eculizumab were associated with estimated glomerular filtration rate >60 ml/min at 6 months in multivariate analysis. The rate of meningococcal infection in the treated cohort was 550 times greater than the background rate in the general population. The relapse rate upon eculizumab withdrawal was 1 per 9.5 person years for patients with a pathogenic mutation and 1 per 10.8 person years for those with a variant of uncertain significance. No relapses were recorded in 67.3 person years off eculizumab in those with no rare genetic variants. Eculizumab was restarted in 6 individuals with functioning kidneys in whom it had been stopped, with no individual progressing to ESKD. We demonstrated that biallelic pathogenic mutations in RNA-processing genes, including EXOSC3, encoding an essential part of the RNA exosome, cause eculizumab nonresponsive aHUS. Recessive HSD11B2 mutations causing apparent mineralocorticoid excess may also present with thrombotic microangiopathy.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Fallo Renal Crónico , Microangiopatías Trombóticas , Humanos , Preescolar , Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Síndrome Hemolítico Urémico Atípico/genética , Recuento de Plaquetas , Proteínas del Sistema Complemento , Estudios de Cohortes , Fallo Renal Crónico/genética
4.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753502

RESUMEN

Genetic variation within the factor H-related (FHR) genes is associated with the complement-mediated kidney disease, C3 glomerulopathy (C3G). There is no definitive treatment for C3G, and a significant proportion of patients develop end-stage renal disease. The prototypical example is CFHR5 nephropathy, through which an internal duplication within a single CFHR5 gene generates a mutant FHR5 protein (FHR5mut) that leads to accumulation of complement C3 within glomeruli. To elucidate how abnormal FHR proteins cause C3G, we modeled CFHR5 nephropathy in mice. Animals lacking the murine factor H (FH) and FHR proteins, but coexpressing human FH and FHR5mut (hFH-FHR5mut), developed glomerular C3 deposition, whereas mice coexpressing human FH with the normal FHR5 protein (hFH-FHR5) did not. Like in patients, the FHR5mut had a dominant gain-of-function effect, and when administered in hFH-FHR5 mice, it triggered C3 deposition. Importantly, adeno-associated virus vector-delivered homodimeric mini-FH, a molecule with superior surface C3 binding compared to FH, reduced glomerular C3 deposition in the presence of the FHR5mut. Our data demonstrate that FHR5mut causes C3G by disrupting the homeostatic regulation of complement within the kidney and is directly pathogenic in C3G. These results support the use of FH-derived molecules with enhanced C3 binding for treating C3G associated with abnormal FHR proteins. They also suggest that targeting FHR5 represents a way to treat complement-mediated kidney injury.


Asunto(s)
Complemento C3/metabolismo , Proteínas del Sistema Complemento/genética , Mutación con Ganancia de Función , Glomerulonefritis/genética , Glomerulonefritis/metabolismo , Glomérulos Renales/patología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Glomérulos Renales/metabolismo , Masculino , Ratones , Ratones Transgénicos , Factores Sexuales
5.
J Am Soc Nephrol ; 31(2): 365-373, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31919107

RESUMEN

BACKGROUND: Primary membranoproliferative GN, including complement 3 (C3) glomerulopathy, is a rare, untreatable kidney disease characterized by glomerular complement deposition. Complement gene mutations can cause familial C3 glomerulopathy, and studies have reported rare variants in complement genes in nonfamilial primary membranoproliferative GN. METHODS: We analyzed whole-genome sequence data from 165 primary membranoproliferative GN cases and 10,250 individuals without the condition (controls) as part of the National Institutes of Health Research BioResource-Rare Diseases Study. We examined copy number, rare, and common variants. RESULTS: Our analysis included 146 primary membranoproliferative GN cases and 6442 controls who were unrelated and of European ancestry. We observed no significant enrichment of rare variants in candidate genes (genes encoding components of the complement alternative pathway and other genes associated with the related disease atypical hemolytic uremic syndrome; 6.8% in cases versus 5.9% in controls) or exome-wide. However, a significant common variant locus was identified at 6p21.32 (rs35406322) (P=3.29×10-8; odds ratio [OR], 1.93; 95% confidence interval [95% CI], 1.53 to 2.44), overlapping the HLA locus. Imputation of HLA types mapped this signal to a haplotype incorporating DQA1*05:01, DQB1*02:01, and DRB1*03:01 (P=1.21×10-8; OR, 2.19; 95% CI, 1.66 to 2.89). This finding was replicated by analysis of HLA serotypes in 338 individuals with membranoproliferative GN and 15,614 individuals with nonimmune renal failure. CONCLUSIONS: We found that HLA type, but not rare complement gene variation, is associated with primary membranoproliferative GN. These findings challenge the paradigm of complement gene mutations typically causing primary membranoproliferative GN and implicate an underlying autoimmune mechanism in most cases.


Asunto(s)
Complemento C3/inmunología , Glomerulonefritis Membranoproliferativa/genética , Secuenciación Completa del Genoma , Factor Nefrítico del Complemento 3/análisis , Femenino , Glomerulonefritis Membranoproliferativa/etiología , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Humanos , Masculino , Serogrupo
6.
Kidney Int ; 97(6): 1260-1274, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32386968

RESUMEN

Recessive mutations in diacylglycerol kinase epsilon (DGKE) display genetic pleiotropy, with pathological features reported as either thrombotic microangiopathy or membranoproliferative glomerulonephritis (MPGN), and clinical features of atypical hemolytic uremic syndrome (aHUS), nephrotic syndrome or both. Pathophysiological mechanisms and optimal management strategies have not yet been defined. In prospective and retrospective studies of aHUS referred to the United Kingdom National aHUS service and prospective studies of MPGN referred to the National Registry of Rare Kidney Diseases for MPGN we defined the incidence of DGKE aHUS as 0.009/million/year and so-called DGKE MPGN as 0.006/million/year, giving a combined incidence of 0.015/million/year. Here, we describe a cohort of sixteen individuals with DGKE nephropathy. One presented with isolated nephrotic syndrome. Analysis of pathological features reveals that DGKE mutations give an MPGN-like appearance to different extents, with but more often without changes in arterioles or arteries. In 15 patients presenting with aHUS, ten had concurrent substantial proteinuria. Identified triggering events were rare but coexistent developmental disorders were seen in six. Nine with aHUS experienced at least one relapse, although in only one did a relapse of aHUS occur after age five years. Persistent proteinuria was seen in the majority of cases. Only two individuals have reached end stage renal disease, 20 years after the initial presentation, and in one, renal transplantation was successfully undertaken without relapse. Six individuals received eculizumab. Relapses on treatment occurred in one individual. In four individuals eculizumab was withdrawn, with one spontaneously resolving aHUS relapse occurring. Thus we suggest that DGKE-mediated aHUS is eculizumab non-responsive and that in individuals who currently receive eculizumab therapy it can be safely withdrawn. This has important patient safety and economic implications.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Diacilglicerol Quinasa , Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Síndrome Hemolítico Urémico Atípico/epidemiología , Síndrome Hemolítico Urémico Atípico/genética , Preescolar , Diacilglicerol Quinasa/genética , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Reino Unido
7.
Am J Transplant ; 20(8): 2260-2263, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31970896

RESUMEN

Hereditary complement C3 deficiency is associated with recurrent bacterial infections and proliferative glomerulonephritis. We describe a case of an adult with complete deficiency of complement C3 due to homozygous mutations in C3 gene: c.1811delT (Val604Glyfs*2), recurrent bacterial infections, crescentic glomerulonephritis, and end-stage renal failure. Following isolated kidney transplantation he would remain C3 deficient with a similar, or increased, risk of infections and glomerulonephritis. As C3 is predominantly synthesized in the liver, with a small proportion of C3 monocyte derived and kidney derived, he proceeded to simultaneous liver-kidney transplantation. The procedure has been successful with restoration of his circulating C3 levels, normal liver and kidney function at 26 months of follow-up. Simultaneous liver-kidney transplant is a viable option to be considered in this rare setting.


Asunto(s)
Glomerulonefritis , Fallo Renal Crónico , Trasplante de Riñón , Adulto , Complemento C3/genética , Humanos , Riñón , Fallo Renal Crónico/cirugía , Hígado , Masculino
8.
J Immunol ; 200(1): 316-326, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29187587

RESUMEN

Factor H (FH) is a key alternative pathway regulator that controls complement activation both in the fluid phase and on specific cell surfaces, thus allowing the innate immune response to discriminate between self and foreign pathogens. However, the interrelationships between FH and a group of closely related molecules, designated the FH-related (FHR) proteins, are currently not well understood. Whereas some studies have suggested that human FHR proteins possess complement regulatory abilities, recent studies have shown that FHR proteins are potent deregulators. Furthermore, the roles of the FHR proteins have not been explored in any in vivo models of inflammatory disease. In this study, we report the cloning and expression of recombinant mouse FH and three FHR proteins (FHR proteins A-C). Results from functional assays show that FHR-A and FHR-B proteins antagonize the protective function of FH in sheep erythrocyte hemolytic assays and increase cell-surface C3b deposition on a mouse kidney proximal tubular cell line (TEC) and a human retinal pigment epithelial cell line (ARPE-19). We also report apparent KD values for the binding interaction of mouse C3d with mouse FH (3.85 µM), FHR-A (136 nM), FHR-B (546 nM), and FHR-C (1.04 µM), which directly correlate with results from functional assays. Collectively, our work suggests that similar to their human counterparts, a subset of mouse FHR proteins have an important modulatory role in complement activation. Further work is warranted to define the in vivo context-dependent roles of these proteins and determine whether FHR proteins are suitable therapeutic targets for the treatment of complement-driven diseases.


Asunto(s)
Proteínas Inactivadoras del Complemento C3b/genética , Factor H de Complemento/metabolismo , Vía Alternativa del Complemento , Riñón/fisiología , Epitelio Pigmentado de la Retina/fisiología , Animales , Línea Celular , Clonación Molecular , Proteínas Inactivadoras del Complemento C3b/metabolismo , Hemólisis , Humanos , Inmunidad Innata , Inmunomodulación , Ratones , Receptores de Complemento/metabolismo , Autotolerancia
9.
J Am Soc Nephrol ; 29(6): 1649-1661, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29588430

RESUMEN

Background C3 glomerulopathy (C3G) is associated with dysregulation of the alternative pathway of complement activation, and treatment options for C3G remain limited. Complement factor H (FH) is a potent regulator of the alternative pathway and might offer a solution, but the mass and complexity of FH makes generation of full-length FH far from trivial. We previously generated a mini-FH construct, with FH short consensus repeats 1-5 linked to repeats 18-20 (FH1-5^18-20), that was effective in experimental C3G. However, the serum t1/2 of FH1-5^18-20 was significantly shorter than that of serum-purified FH.Methods We introduced the oligomerization domain of human FH-related protein 1 (denoted by R1-2) at the carboxy or amino terminus of human FH1-5^18-20 to generate two homodimeric mini-FH constructs (FHR1-2^1-5^18-20 and FH1-5^18-20^R1-2, respectively) in Chinese hamster ovary cells and tested these constructs using binding, fluid-phase, and erythrocyte lysis assays, followed by experiments in FH-deficient Cfh-/- mice.Results FHR1-2^1-5^18-20 and FH1-5^18-20^R1-2 homodimerized in solution and displayed avid binding profiles on clustered C3b surfaces, particularly FHR1-2^1-5^18-20 Each construct was >10-fold more effective than FH at inhibiting cell surface complement activity in vitro and restricted glomerular basement membrane C3 deposition in vivo significantly better than FH or FH1-5^18-20 FH1-5^18-20^R1-2 had a C3 breakdown fragment binding profile similar to that of FH, a >5-fold increase in serum t1/2 compared with that of FH1-5^18-20, and significantly better retention in the kidney than FH or FH1-5^18-20Conclusions FH1-5^18-20^R1-2 may have utility as a treatment option for C3G or other complement-mediated diseases.


Asunto(s)
Complemento C3/metabolismo , Complemento C3b/metabolismo , Factor H de Complemento/metabolismo , Factor H de Complemento/farmacocinética , Glomerulonefritis Membranoproliferativa/metabolismo , Animales , Factor H de Complemento/síntesis química , Factor H de Complemento/genética , Vía Alternativa del Complemento , Cricetinae , Membrana Basal Glomerular/metabolismo , Glomerulonefritis Membranoproliferativa/tratamiento farmacológico , Semivida , Ratones , Unión Proteica , Ingeniería de Proteínas
10.
J Am Soc Nephrol ; 28(4): 1084-1091, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27974406

RESUMEN

The demonstration of impaired C regulation in the thrombotic microangiopathy (TMA) atypical hemolytic uremic syndrome (aHUS) resulted in the successful introduction of the C inhibitor eculizumab into clinical practice. C abnormalities account for approximately 50% of aHUS cases; however, mutations in the non-C gene diacylglycerol kinase-ε have been described recently in individuals not responsive to eculizumab. We report here a family in which the proposita presented with aHUS but did not respond to eculizumab. Her mother had previously presented with a post-renal transplant TMA. Both the proposita and her mother also had Charcot-Marie-Tooth disease. Using whole-exome sequencing, we identified a mutation in the inverted formin 2 gene (INF2) in the mutational hotspot for FSGS. Subsequent analysis of the Newcastle aHUS cohort identified another family with a functionally-significant mutation in INF2 In this family, renal transplantation was associated with post-transplant TMA. All individuals with INF2 mutations presenting with a TMA also had aHUS risk haplotypes, potentially accounting for the genetic pleiotropy. Identifying individuals with TMAs who may not respond to eculizumab will avoid prolonged exposure of such individuals to the infectious complications of terminal pathway C blockade.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/complicaciones , Síndrome Hemolítico Urémico Atípico/genética , Proteínas de Microfilamentos/genética , Mutación , Microangiopatías Trombóticas/etiología , Adolescente , Niño , Femenino , Forminas , Humanos , Linaje
11.
Kidney Int ; 92(5): 1261-1271, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28750931

RESUMEN

Factor H autoantibodies can impair complement regulation, resulting in atypical hemolytic uremic syndrome, predominantly in childhood. There are no trials investigating treatment, and clinical practice is only informed by retrospective cohort analysis. Here we examined 175 children presenting with atypical hemolytic uremic syndrome in the United Kingdom and Ireland for factor H autoantibodies that included 17 children with titers above the international standard. Of the 17, seven had a concomitant rare genetic variant in a gene encoding a complement pathway component or regulator. Two children received supportive treatment; both developed established renal failure. Plasma exchange was associated with a poor rate of renal recovery in seven of 11 treated. Six patients treated with eculizumab recovered renal function. Contrary to global practice, immunosuppressive therapy to prevent relapse in plasma exchange-treated patients was not adopted due to concerns over treatment-associated complications. Without immunosuppression, the relapse rate was high (five of seven). However, reintroduction of treatment resulted in recovery of renal function. All patients treated with eculizumab achieved sustained remission. Five patients received renal transplants without specific factor H autoantibody-targeted treatment with recurrence in one who also had a functionally significant CFI mutation. Thus, our current practice is to initiate eculizumab therapy for treatment of factor H autoantibody-mediated atypical hemolytic uremic syndrome rather than plasma exchange with or without immunosuppression. Based on this retrospective analysis we see no suggestion of inferior treatment, albeit the strength of our conclusions is limited by the small sample size.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/inmunología , Autoanticuerpos/sangre , Fallo Renal Crónico/inmunología , Trasplante de Riñón , Adolescente , Anticuerpos Monoclonales Humanizados/uso terapéutico , Síndrome Hemolítico Urémico Atípico/sangre , Síndrome Hemolítico Urémico Atípico/genética , Síndrome Hemolítico Urémico Atípico/terapia , Niño , Preescolar , Factor H de Complemento/inmunología , Proteínas del Sistema Complemento/análisis , Proteínas del Sistema Complemento/genética , Femenino , Humanos , Terapia de Inmunosupresión/efectos adversos , Terapia de Inmunosupresión/métodos , Lactante , Irlanda , Fallo Renal Crónico/sangre , Fallo Renal Crónico/genética , Fallo Renal Crónico/terapia , Masculino , Intercambio Plasmático , Recurrencia , Diálisis Renal , Estudios Retrospectivos , Reino Unido
12.
J Am Soc Nephrol ; 27(6): 1617-24, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26490391

RESUMEN

The regulators of complement activation cluster at chromosome 1q32 contains the complement factor H (CFH) and five complement factor H-related (CFHR) genes. This area of the genome arose from several large genomic duplications, and these low-copy repeats can cause genome instability in this region. Genomic disorders affecting these genes have been described in atypical hemolytic uremic syndrome, arising commonly through nonallelic homologous recombination. We describe a novel CFH/CFHR3 hybrid gene secondary to a de novo 6.3-kb deletion that arose through microhomology-mediated end joining rather than nonallelic homologous recombination. We confirmed a transcript from this hybrid gene and showed a secreted protein product that lacks the recognition domain of factor H and exhibits impaired cell surface complement regulation. The fact that the formation of this hybrid gene arose as a de novo event suggests that this cluster is a dynamic area of the genome in which additional genomic disorders may arise.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/genética , Proteínas Sanguíneas/genética , Activación de Complemento/genética , Eliminación de Gen , Animales , Células Cultivadas , Factor H de Complemento/genética , Humanos , Ovinos
13.
Kidney Int ; 88(6): 1314-1322, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26221753

RESUMEN

Abnormal regulation of the complement alternative pathway is associated with C3 glomerulopathy. Complement factor H is the main plasma regulator of the alternative pathway and consists of 20 short consensus repeat (SCR) domains. Although recombinant full-length factor H represents a logical treatment for C3 glomerulopathy, its production has proved challenging. We and others have designed recombinant mini-factor H proteins in which 'non-essential' SCR domains have been removed. Here, we report the in vitro and in vivo effects of a mini-complement factor H protein, FH1-5^18-20, using the unique factor H-deficient (Cfh-/-) mouse model of C3 glomerulopathy. FH1-5^18-20 is comprised of the key complement regulatory domains (SCRs 1-5) linked to the surface recognition domains (SCRs 18-20). Intraperitoneal injection of FH1-5^18-20 in Cfh-/- mice reduced abnormal glomerular C3 deposition, similar to full-length factor H. Systemic effects on plasma alternative pathway control were comparatively modest, in association with a short half-life. Thus, FH1-5^18-20 is a potential therapeutic agent for C3 glomerulopathy and other renal conditions with alternative pathway-mediated tissue injury.

14.
J Am Soc Nephrol ; 25(11): 2425-33, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24722444

RESUMEN

Complement C3 activation is a characteristic finding in membranoproliferative GN (MPGN). This activation can be caused by immune complex deposition or an acquired or inherited defect in complement regulation. Deficiency of complement factor H has long been associated with MPGN. More recently, heterozygous genetic variants have been reported in sporadic cases of MPGN, although their functional significance has not been assessed. We describe a family with MPGN and acquired partial lipodystrophy. Although C3 nephritic factor was shown in family members with acquired partial lipodystrophy, it did not segregate with the renal phenotype. Genetic analysis revealed a novel heterozygous mutation in complement factor H (R83S) in addition to known risk polymorphisms carried by individuals with MPGN. Patients with MPGN had normal levels of factor H, and structural analysis of the mutant revealed only subtle alterations. However, functional analysis revealed profoundly reduced C3b binding, cofactor activity, and decay accelerating activity leading to loss of regulation of the alternative pathway. In summary, this family showed a confluence of common and rare functionally significant genetic risk factors causing disease. Data from our analysis of these factors highlight the role of the alternative pathway of complement in MPGN.


Asunto(s)
Factor H de Complemento/deficiencia , Factor H de Complemento/genética , Vía Alternativa del Complemento/genética , Eritrocitos/inmunología , Glomerulonefritis Membranoproliferativa/genética , Glomerulonefritis Membranoproliferativa/inmunología , Enfermedades Renales/genética , Animales , Factor H de Complemento/química , Factor H de Complemento/inmunología , Vía Alternativa del Complemento/inmunología , Cristalografía por Rayos X , Eritrocitos/citología , Salud de la Familia , Femenino , Haplotipos , Enfermedades por Deficiencia de Complemento Hereditario , Heterocigoto , Humanos , Enfermedades Renales/inmunología , Masculino , Linaje , Polimorfismo Genético , Estructura Terciaria de Proteína , Ovinos , Relación Estructura-Actividad
15.
Blood ; 119(2): 591-601, 2012 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-22058112

RESUMEN

Genomic disorders affecting the genes encoding factor H (fH) and the 5 factor H related proteins have been described in association with atypical hemolytic uremic syndrome. These include deletions of CFHR3, CFHR1, and CFHR4 in association with fH autoantibodies and the formation of a hybrid CFH/CFHR1 gene. These occur through nonallelic homologous recombination secondary to the presence of large segmental duplications (macrohomology) in this region. Using multiplex ligation-dependent probe amplification to screen for such genomic disorders, we have identified a large atypical hemolytic uremic syndrome family where a deletion has occurred through microhomology-mediated end joining rather than nonallelic homologous recombination. In the 3 affected persons of this family, we have shown that the deletion results in formation of a CFH/CFHR3 gene. We have shown that the protein product of this is a 24 SCR protein that is secreted with normal fluid-phase activity but marked loss of complement regulation at cell surfaces despite increased heparin binding. In this study, we have therefore shown that microhomology in this area of chromosome 1 predisposes to disease associated genomic disorders and that the complement regulatory function of fH at the cell surface is critically dependent on the structural integrity of the whole molecule.


Asunto(s)
Apolipoproteínas/genética , Proteínas Sanguíneas/genética , Proteínas Inactivadoras del Complemento C3b/genética , Factor H de Complemento/genética , Eliminación de Gen , Predisposición Genética a la Enfermedad , Síndrome Hemolítico-Urémico/genética , Animales , Apolipoproteínas/metabolismo , Síndrome Hemolítico Urémico Atípico , Autoanticuerpos , Secuencia de Bases , Proteínas Sanguíneas/metabolismo , Western Blotting , Activación de Complemento , Proteínas Inactivadoras del Complemento C3b/metabolismo , Factor H de Complemento/metabolismo , Eritrocitos/metabolismo , Hemólisis , Síndrome Hemolítico-Urémico/metabolismo , Síndrome Hemolítico-Urémico/patología , Recombinación Homóloga , Humanos , Datos de Secuencia Molecular , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Mutación/genética , Linaje , Homología de Secuencia de Ácido Nucleico , Ovinos , Resonancia por Plasmón de Superficie
16.
Blood ; 115(2): 379-87, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-19861685

RESUMEN

Factor H autoantibodies have been reported in approximately 10% of patients with atypical hemolytic uremic syndrome (aHUS) and are associated with deficiency of factor H-related proteins 1 and 3. In this study we examined the prevalence of factor H autoantibodies in the Newcastle cohort of aHUS patients, determined whether the presence of such autoantibodies is always associated with deficiency of factor H-related proteins 1 and 3, and examined whether such patients have additional susceptibility factors and/or mutations in the genes encoding complement regulator/activators. We screened 142 patients with aHUS and found factor H autoantibodies in 13 individuals (age 1-11 years). The presence of the autoantibodies was confirmed by Western blotting. By using multiplex ligation-dependent probe amplification we measured complement factor H-related (CFHR)1 and CFHR3 copy number. In 10 of the 13 patients there were 0 copies of CFHR1, and in 3 patients there were 2. In 3 of the patients with 0 copies of CFHR1 there was 1 copy of CFHR3, and these individuals exhibited a novel deletion incorporating CFHR1 and CFHR4. In 5 patients mutations were identified: 1 in CFH, 1 in CFI, 1 in CD46, and 2 in C3. The latter observation emphasizes that multiple concurrent factors may be necessary in individual patients for disease manifestation.


Asunto(s)
Apolipoproteínas/genética , Autoanticuerpos/sangre , Proteínas Sanguíneas/genética , Complemento C3/genética , Proteínas Inactivadoras del Complemento C3b/genética , Factor H de Complemento/genética , Factor I de Complemento/genética , Síndrome Hemolítico-Urémico/sangre , Síndrome Hemolítico-Urémico/genética , Proteína Cofactora de Membrana/genética , Apolipoproteínas/inmunología , Apolipoproteínas/metabolismo , Autoanticuerpos/inmunología , Proteínas Sanguíneas/inmunología , Proteínas Sanguíneas/metabolismo , Niño , Preescolar , Estudios de Cohortes , Complemento C3/inmunología , Complemento C3/metabolismo , Proteínas Inactivadoras del Complemento C3b/inmunología , Proteínas Inactivadoras del Complemento C3b/metabolismo , Factor H de Complemento/inmunología , Factor H de Complemento/metabolismo , Factor I de Complemento/inmunología , Factor I de Complemento/metabolismo , Femenino , Dosificación de Gen , Síndrome Hemolítico-Urémico/inmunología , Humanos , Lactante , Masculino , Proteína Cofactora de Membrana/inmunología , Proteína Cofactora de Membrana/metabolismo , Eliminación de Secuencia
17.
Cancers (Basel) ; 14(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077823

RESUMEN

Cisplatin-based chemo-radiotherapy (CRT) is the standard treatment for advanced cervical cancer (CC) but the response rate is poor (46-72%) and cisplatin is nephrotoxic. Therefore, better treatment of CC is urgently needed. We have directly compared, for the first time, the cytotoxicity of four DDR inhibitors (rucaparib/PARPi, VE-821/ATRi, PF-477736/CHK1i and MK-1775/WEE1i) as single agents, and in combination with cisplatin and radiotherapy (RT) in a panel of CC cells. All inhibitors alone caused concentration-dependent cytotoxicity. Low ATM and DNA-PKcs levels were associated with greater VE-821 cytotoxicity. Cisplatin induced ATR, CHK1 and WEE1 activity in all of the cell lines. Cisplatin only activated PARP in S-phase cells, but RT activated PARP in the entire population. Rucaparib was the most potent radiosensitiser and VE-821 was the most potent chemosensitiser. VE-821, PF-47736 and MK-1775 attenuated cisplatin-induced S-phase arrest but tended to increase G2 phase accumulation. In mice, cisplatin-induced acute kidney injury was associated with oxidative stress and PARP activation and was prevented by rucaparib. Therefore, while all inhibitors investigated may increase the efficacy of CRT, the greatest clinical potential of rucaparib may be in limiting kidney damage, which is dose-limiting.

18.
Front Immunol ; 13: 1028760, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36643920

RESUMEN

Age-related macular degeneration (AMD) is linked to 2 main disparate genetic pathways: a chromosome 10 risk locus and the alternative pathway (AP) of complement. Rare genetic variants in complement factor H (CFH; FH) and factor I (CFI; FI) are associated with AMD. FH acts as a soluble cofactor to facilitate FI's cleavage and inactivation of the central molecule of the AP, C3b. For personalised treatment, sensitive assays are required to define the functional significance of individual AP genetic variants. Generation of recombinant FI for functional analysis has thus far been constrained by incomplete processing resulting in a preparation of active and inactive protein. Using an internal ribosomal entry site (IRES)-Furin-CFI expression vector, fully processed FI was generated with activity equivalent to serum purified FI. By generating FI with an inactivated serine protease domain (S525A FI), a real-time surface plasmon resonance assay of C3b:FH:FI complex formation for characterising variants in CFH and CFI was developed and correlated well with standard assays. Using these methods, we further demonstrate that patient-associated rare genetic variants lacking enzymatic activity (e.g. CFI I340T) may competitively inhibit the wild-type FI protein. The dominant negative effect identified in inactive factor I variants could impact on the pharmacological replacement of FI currently being investigated for the treatment of dry AMD.


Asunto(s)
Complemento C3b , Factor H de Complemento , Factor I de Complemento , Degeneración Macular , Humanos , Complemento C3b/genética , Degeneración Macular/genética , Factor H de Complemento/genética , Factor I de Complemento/genética
19.
Front Immunol ; 12: 681098, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054871

RESUMEN

Recombinant human factor H (hFH) has potential for treating diseases linked to aberrant complement regulation including C3 glomerulopathy (C3G) and dry age-related macular degeneration. Murine FH (mFH), produced in the same host, is useful for pre-clinical investigations in mouse models of disease. An abundance of FH in plasma suggests high doses, and hence microbial production, will be needed. Previously, Pichia pastoris produced useful but modest quantities of hFH. Herein, a similar strategy yielded miniscule quantities of mFH. Since FH has 40 disulfide bonds, we created a P. pastoris strain containing a methanol-inducible codon-modified gene for protein-disulfide isomerase (PDI) and transformed this with codon-modified DNA encoding mFH under the same promoter. What had been barely detectable yields of mFH became multiple 10s of mg/L. Our PDI-overexpressing strain also boosted hFH overproduction, by about tenfold. These enhancements exceeded PDI-related production gains reported for other proteins, all of which contain fewer disulfide-stabilized domains. We optimized fermentation conditions, purified recombinant mFH, enzymatically trimmed down its (non-human) N-glycans, characterised its functions in vitro and administered it to mice. In FH-knockout mice, our de-glycosylated recombinant mFH had a shorter half-life and induced more anti-mFH antibodies than mouse serum-derived, natively glycosylated, mFH. Even sequential daily injections of recombinant mFH failed to restore wild-type levels of FH and C3 in mouse plasma beyond 24 hours after the first injection. Nevertheless, mFH functionality appeared to persist in the glomerular basement membrane because C3-fragment deposition here, a hallmark of C3G, remained significantly reduced throughout and beyond the ten-day dosing regimen.


Asunto(s)
Complemento C3/inmunología , Complemento C3/metabolismo , Factor H de Complemento/biosíntesis , Factor H de Complemento/deficiencia , Proteína Disulfuro Isomerasas/metabolismo , Proteínas Recombinantes/metabolismo , Animales , Expresión Génica , Inmunomodulación , Ratones , Ratones Noqueados , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Levaduras/genética , Levaduras/metabolismo
20.
Front Immunol ; 12: 752916, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956184

RESUMEN

C3 glomerulopathy (C3G) is associated with dysregulation of the alternative pathway (AP) of complement and treatment options remain inadequate. Factor H (FH) is a potent regulator of the AP. An in-depth analysis of FH-related protein dimerised minimal (mini)-FH constructs has recently been published. This analysis showed that addition of a dimerisation module to mini-FH not only increased serum half-life but also improved complement regulatory function, thus providing a potential treatment option for C3G. Herein, we describe the production of a murine version of homodimeric mini-FH [mHDM-FH (mFH1-5^18-20^R1-2)], developed to reduce the risk of anti-drug antibody formation during long-term experiments in murine models of C3G and other complement-driven pathologies. Our analysis of mHDM-FH indicates that it binds with higher affinity and avidity to WT mC3b when compared to mouse (m)FH (mHDM-FH KD=505 nM; mFH KD=1370 nM) analogous to what we observed with the respective human proteins. The improved binding avidity resulted in enhanced complement regulatory function in haemolytic assays. Extended interval dosing studies in CFH-/- mice (5mg/kg every 72hrs) were partially effective and bio-distribution analysis in CFH-/- mice, through in vivo imaging technologies, demonstrates that mHDM-FH is preferentially deposited and remains fixed in the kidneys (and liver) for up to 4 days. Extended dosing using an AAV- human HDM-FH (hHDM-FH) construct achieved complete normalisation of C3 levels in CFH-/- mice for 3 months and was associated with a significant reduction in glomerular C3 staining. Our data demonstrate the ability of gene therapy delivery of mini-FH constructs to enhance complement regulation in vivo and support the application of this approach as a novel treatment strategy in diseases such as C3G.


Asunto(s)
Complemento C3/inmunología , Factor H de Complemento/inmunología , Animales , Factor H de Complemento/deficiencia , Riñón/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA