Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Neurobiol Dis ; 194: 106463, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38485095

RESUMEN

Mutations in NR2E3, a gene encoding an orphan nuclear transcription factor, cause two retinal dystrophies with a distinct phenotype, but the precise role of NR2E3 in rod and cone transcriptional networks remains unclear. To dissect NR2E3 function, we performed scRNA-seq in the retinas of wildtype and two different Nr2e3 mouse models that show phenotypes similar to patients carrying NR2E3 mutations. Our results reveal that rod and cone populations are not homogeneous and can be separated into different sub-classes. We identify a previously unreported cone pathway that generates hybrid cones co-expressing both cone- and rod-related genes. In mutant retinas, this hybrid cone subpopulation is more abundant and includes a subpopulation of rods transitioning towards a cone cell fate. Hybrid photoreceptors with high misexpression of cone- and rod-related genes are prone to regulated necrosis. Overall, our results shed light on the role of NR2E3 in modulating photoreceptor differentiation towards cone and rod fates and explain how different mutations in NR2E3 lead to distinct visual disorders in humans.


Asunto(s)
Receptores Nucleares Huérfanos , Retina , Ratones , Animales , Humanos , Receptores Nucleares Huérfanos/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica
2.
J Med Genet ; 60(4): 406-415, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36243518

RESUMEN

BACKGROUND: Schaaf-Yang syndrome (SYS) is caused by truncating mutations in MAGEL2, mapping to the Prader-Willi region (15q11-q13), with an observed phenotype partially overlapping that of Prader-Willi syndrome. MAGEL2 plays a role in retrograde transport and protein recycling regulation. Our aim is to contribute to the characterisation of SYS pathophysiology at clinical, genetic and molecular levels. METHODS: We performed an extensive phenotypic and mutational revision of previously reported patients with SYS. We analysed the secretion levels of amyloid-ß 1-40 peptide (Aß1-40) and performed targeted metabolomic and transcriptomic profiles in fibroblasts of patients with SYS (n=7) compared with controls (n=11). We also transfected cell lines with vectors encoding wild-type (WT) or mutated MAGEL2 to assess stability and subcellular localisation of the truncated protein. RESULTS: Functional studies show significantly decreased levels of secreted Aß1-40 and intracellular glutamine in SYS fibroblasts compared with WT. We also identified 132 differentially expressed genes, including non-coding RNAs (ncRNAs) such as HOTAIR, and many of them related to developmental processes and mitotic mechanisms. The truncated form of MAGEL2 displayed a stability similar to the WT but it was significantly switched to the nucleus, compared with a mainly cytoplasmic distribution of the WT MAGEL2. Based on the updated knowledge, we offer guidelines for the clinical management of patients with SYS. CONCLUSION: A truncated MAGEL2 protein is stable and localises mainly in the nucleus, where it might exert a pathogenic neomorphic effect. Aß1-40 secretion levels and HOTAIR mRNA levels might be promising biomarkers for SYS. Our findings may improve SYS understanding and clinical management.


Asunto(s)
Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/genética , Fenotipo , Mutación , Proteínas/genética , Biomarcadores
3.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38255908

RESUMEN

Mitochondria are double-membrane organelles within eukaryotic cells that act as cellular power houses owing to their ability to efficiently generate the ATP required to sustain normal cell function. Also, they represent a "hub" for the regulation of a plethora of processes, including cellular homeostasis, metabolism, the defense against oxidative stress, and cell death. Mitochondrial dysfunctions are associated with a wide range of human diseases with complex pathologies, including metabolic diseases, neurodegenerative disorders, and cancer. Therefore, regulating dysfunctional mitochondria represents a pivotal therapeutic opportunity in biomedicine. Marine ecosystems are biologically very diversified and harbor a broad range of organisms, providing both novel bioactive substances and molecules with meaningful biomedical and pharmacological applications. Recently, many mitochondria-targeting marine-derived molecules have been described to regulate mitochondrial biology, thus exerting therapeutic effects by inhibiting mitochondrial abnormalities, both in vitro and in vivo, through different mechanisms of action. Here, we review different strategies that are derived from marine organisms which modulate specific mitochondrial processes or mitochondrial molecular pathways and ultimately aim to find key molecules to treat a wide range of human diseases characterized by impaired mitochondrial function.


Asunto(s)
Ecosistema , Mitocondrias , Humanos , Muerte Celular , Células Eucariotas , Estrés Oxidativo
4.
Semin Cell Dev Biol ; 102: 40-47, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31761444

RESUMEN

The cerebrospinal fluid (CSF) is a waterly, colorless fluid contained within the brain ventricles and the cranial and spinal subarachnoid spaces. CSF physiological functions range from hydromechanical protection of the central nervous system (CNS) to CNS modulation of developmental processes and regulation of interstitial fluid homeostasis. Optic nerve (ON) is surrounded by CSF circulating in the subarachnoid spaces and is exposed to both CSF (CSFP) and intra ocular (IOP) pressures, which converge at the lamina cribrosa (LC) as two opposite forces. The trans-lamina cribrosa pressure gradient (TLPG) is defined as IOP - CSFP and its alterations (due either to an elevation in IOP or a reduction in ICP) could result in structural damaging of the ON, including glaucomatous changes. The purpose of this review is to update the readers on the CSF contribution in controlling the functions/dysfunctions of ON by regulating homeostasis at LC. We also highlight emerging parallelisms regarding the expression of cilia-related genes in the regulation of common functions of body fluids in both brain and eye structures.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Ojo/metabolismo , Homeostasis , Presión , Presión del Líquido Cefalorraquídeo , Humanos
5.
Neurobiol Dis ; 170: 105774, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35605759

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine (polyQ)-encoding CAG repeat in the ATXN3 gene. Because the ATXN3 protein regulates photoreceptor ciliogenesis and phagocytosis, we aimed to explore whether expanded polyQ ATXN3 impacts retinal function and integrity in SCA3 patients and transgenic mice. We evaluated the retinal structure and function in five patients with SCA3 and in a transgenic mouse model of this disease (YACMJD84.2, Q84) using optical coherence tomography (OCT) and electroretinogram (ERG). In the transgenic mice, we further: a) determined the retinal expression pattern of ATXN3 and the distribution of cones and rods using immunofluorescence (IF); and b) assessed the retinal ultrastructure using transmission electron microscopy (TEM). Some patients with SCA3 in our cohort revealed: i) reduced central macular thickness indirectly correlated with disease duration; ii) decreased thickness of the macula and the ganglion cell layer, and reduced macula volume inversely correlated with disease severity (SARA score); and iii) electrophysiological dysfunction of cones, rods, and inner retinal cells. Transgenic mice replicated the human OCT and ERG findings with aged homozygous Q84/Q84 mice showing a stronger phenotype accompanied by further thinning of the outer nuclear layer and photoreceptor layer and highly reduced cone and rod activities, thus supporting severe retinal dysfunction in these mice. In addition, Q84 mice showed progressive accumulation of ATXN3-positive aggregates throughout several retinal layers and depletion of cones alongside the disease course. TEM analysis of aged Q84/Q84 mouse retinas supported the ATXN3 aggregation findings by revealing the presence of high number of negative electron dense puncta in ganglion cells, inner plexiform and inner nuclear layers, and showed further thinning of the outer plexiform layer, thickening of the retinal pigment epithelium and elongation of apical microvilli. Our results indicate that retinal alterations detected by non-invasive eye examination using OCT and ERG could represent a biological marker of disease progression and severity in patients with SCA3.


Asunto(s)
Enfermedad de Machado-Joseph , Anciano , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Modelos Animales de Enfermedad , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Ratones , Ratones Transgénicos , Retina/metabolismo
6.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36232896

RESUMEN

Mutations in the Ceramide Kinase-like (CERKL) gene cause retinal dystrophies, characterized by progressive degeneration of retinal neurons, which eventually lead to vision loss. Among other functions, CERKL is involved in the regulation of autophagy, mitochondrial dynamics, and metabolism in the retina. However, CERKL is nearly ubiquitously expressed, and it has been recently described to play a protective role against brain injury. Here we show that Cerkl is expressed in the hippocampus, and we use mouse hippocampal neurons to explore the impact of either overexpression or depletion of CERKL on mitochondrial trafficking and dynamics along axons. We describe that a pool of CERKL localizes at mitochondria in hippocampal axons. Importantly, the depletion of CERKL in the CerklKD/KO mouse model is associated with changes in the expression of fusion/fission molecular regulators, induces mitochondrial fragmentation, and impairs axonal mitochondrial trafficking. Our findings highlight the role of CERKL, a retinal dystrophy gene, in the regulation of mitochondrial health and homeostasis in central nervous system anatomic structures other than the retina.


Asunto(s)
Neuronas , Fosfotransferasas (Aceptor de Grupo Alcohol) , Retina , Distrofias Retinianas , Animales , Hipocampo/citología , Ratones , Dinámicas Mitocondriales , Neuronas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Retina/metabolismo
7.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077078

RESUMEN

Activation of NF-κB transcription factor is strictly regulated to accurately direct cellular processes including inflammation, immunity, and cell survival. In the retina, the modulation of the NF-κB pathway is essential to prevent excessive inflammatory responses, which plays a pivotal role in many retinal neurodegenerative diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and inherited retinal dystrophies (IRDs). A critical cytokine mediating inflammatory responses in retinal cells is tumor necrosis factor-alpha (TNFα), leading to the activation of several transductional pathways, including NF-κB. However, the multiple factors orchestrating the appropriate regulation of NF-κB in retinal cells still remain unclear. The present study explores how the ubiquitin-specific protease 48 (USP48) downregulation impacts the stability and transcriptional activity of NF-κB/p65 in retinal pigment epithelium (RPE), at both basal conditions and following TNFα stimulation. We described that USP48 downregulation stabilizes p65. Notably, the accumulation of p65 is mainly detectable in the nuclear compartment and it is accompanied by an increased NF-κB transcriptional activity. These results delineate a novel role of USP48 in negatively regulating NF-κB in retinal cells, providing new opportunities for therapeutic intervention in retinal pathologies.


Asunto(s)
FN-kappa B , Epitelio Pigmentado de la Retina , FN-kappa B/metabolismo , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
8.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293380

RESUMEN

Proteins related to the ubiquitin-proteasome system play an important role during the differentiation and ciliogenesis of photoreceptor cells. Mutations in several genes involved in ubiquitination and proteostasis have been identified as causative of inherited retinal dystrophies (IRDs) and ciliopathies. USP48 is a deubiquitinating enzyme whose role in the retina is still unexplored although previous studies indicate its relevance for neurosensory organs. In this work, we describe that a pool of endogenous USP48 localises to the basal body in retinal cells and provide data that supports the function of USP48 in the photoreceptor cilium. We also demonstrate that USP48 interacts with the IRD-associated proteins ARL3 and UNC119a, and stabilise their protein levels using different mechanisms. Our results suggest that USP48 may act in the regulation/stabilisation of key ciliary proteins for photoreceptor function, in the modulation of intracellular protein transport, and in ciliary trafficking to the photoreceptor outer segment.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Distrofias Retinianas , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Células Fotorreceptoras/metabolismo , Cilios/metabolismo , Ubiquitina/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
9.
Neurobiol Dis ; 156: 105405, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34048907

RESUMEN

The retina is a highly active metabolic organ that displays a particular vulnerability to genetic and environmental factors causing stress and homeostatic imbalance. Mitochondria constitute a bioenergetic hub that coordinates stress response and cellular homeostasis, therefore structural and functional regulation of the mitochondrial dynamic network is essential for the mammalian retina. CERKL (ceramide kinase like) is a retinal degeneration gene whose mutations cause Retinitis Pigmentosa in humans, a visual disorder characterized by photoreceptors neurodegeneration and progressive vision loss. CERKL produces multiple isoforms with a dynamic subcellular localization. Here we show that a pool of CERKL isoforms localizes at mitochondria in mouse retinal ganglion cells. The depletion of CERKL levels in CerklKD/KO(knockdown/knockout) mouse retinas cause increase of autophagy, mitochondrial fragmentation, alteration of mitochondrial distribution, and dysfunction of mitochondrial-dependent bioenergetics and metabolism. Our results support CERKL as a regulator of autophagy and mitochondrial biology in the mammalian retina.


Asunto(s)
Mitocondrias/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Retina/metabolismo , Distrofias Retinianas/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Autofagia/fisiología , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/ultraestructura , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Retina/ultraestructura , Distrofias Retinianas/genética , Distrofias Retinianas/patología , Células Ganglionares de la Retina/ultraestructura , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología
10.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673358

RESUMEN

Alternative splicing of mRNA is an essential mechanism to regulate and increase the diversity of the transcriptome and proteome. Alternative splicing frequently occurs in a tissue- or time-specific manner, contributing to differential gene expression between cell types during development. Neural tissues present extremely complex splicing programs and display the highest number of alternative splicing events. As an extension of the central nervous system, the retina constitutes an excellent system to illustrate the high diversity of neural transcripts. The retina expresses retinal specific splicing factors and produces a large number of alternative transcripts, including exclusive tissue-specific exons, which require an exquisite regulation. In fact, a current challenge in the genetic diagnosis of inherited retinal diseases stems from the lack of information regarding alternative splicing of retinal genes, as a considerable percentage of mutations alter splicing or the relative production of alternative transcripts. Modulation of alternative splicing in the retina is also instrumental in the design of novel therapeutic approaches for retinal dystrophies, since it enables precision medicine for specific mutations.


Asunto(s)
Empalme Alternativo , Enfermedades Genéticas Congénitas , Retina/metabolismo , Enfermedades de la Retina , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Humanos , Retina/patología , Enfermedades de la Retina/genética , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología
11.
Neurobiol Dis ; 146: 105122, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33007388

RESUMEN

Mutations in NR2E3 cause retinitis pigmentosa (RP) and enhanced S-cone syndrome (ESCS) in humans. This gene produces a large isoform encoded in 8 exons and a previously unreported shorter isoform of 7 exons, whose function is unknown. We generated two mouse models by targeting exon 8 of Nr2e3 using CRISPR/Cas9-D10A nickase. Allele Δ27 is an in-frame deletion of 27 bp that ablates the dimerization domain H10, whereas allele ΔE8 (full deletion of exon 8) produces only the short isoform, which lacks the C-terminal part of the ligand binding domain (LBD) that encodes both H10 and the AF2 domain involved in the Nr2e3 repressor activity. The Δ27 mutant shows developmental alterations and a non-progressive electrophysiological dysfunction that resembles the ESCS phenotype. The ΔE8 mutant exhibits progressive retinal degeneration, as occurs in human RP patients. Our mutants suggest a role for Nr2e3 as a cone-patterning regulator and provide valuable models for studying mechanisms of NR2E3-associated retinal dystrophies and evaluating potential therapies.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Mutación/genética , Receptores Nucleares Huérfanos/metabolismo , Degeneración Retiniana/genética , Retinitis Pigmentosa/metabolismo , Trastornos de la Visión/genética , Exones/genética , Enfermedades Hereditarias del Ojo/metabolismo , Humanos , Fenotipo , Isoformas de Proteínas/genética , Retina/metabolismo , Degeneración Retiniana/metabolismo , Retinitis Pigmentosa/genética , Trastornos de la Visión/metabolismo
12.
Adv Exp Med Biol ; 1233: 303-310, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32274763

RESUMEN

Primary cilia are microtubule-based sensory organelles that are involved in the organization of numerous key signals during development and in differentiated tissue homeostasis. In fact, the formation and resorption of cilia highly depends on the cell cycle phase in replicative cells, and the ubiquitin proteasome pathway (UPS) proteins, such as E3 ligases and deubiquitinating enzymes, promote microtubule assembly and disassembly by regulating the degradation/availability of ciliary regulatory proteins. Also, many differentiated tissues display cilia, and mutations in genes encoding ciliary proteins are associated with several human pathologies, named ciliopathies, which are multi-organ rare diseases. The retina is one of the organs most affected by ciliary gene mutations because photoreceptors are ciliated cells. Photoreception and phototransduction occur in the outer segment, a highly specialized neurosensory cilium. In this review, we focus on the function of UPS proteins in ciliogenesis and cilia length control in replicative cells and compare it with the scanty data on the identified UPS genes that cause syndromic and non-syndromic inherited retinal disorders. Clearly, further work using animal models and gene-edited mutants of ciliary genes in cells and organoids will widen the landscape of UPS involvement in ciliogenesis and cilia homeostasis.


Asunto(s)
Cilios/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Retina/citología , Retina/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Células Fotorreceptoras/citología , Células Fotorreceptoras/metabolismo
13.
Mol Vis ; 25: 800-813, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31819342

RESUMEN

Purpose: Genes involved in the development and differentiation of the mammalian retina are also associated with inherited retinal dystrophies (IRDs) and age-related macular degeneration. Transcriptional regulation of retinal cell differentiation has been addressed by genetic and transcriptomic studies. Much less is known about the posttranslational regulation of key regulatory proteins, although mutations in some genes involved in ubiquitination and proteostasis-E3 ligases and deubiquitinating enzymes (DUBs)-cause IRDs. This study intends to provide new data on DUB gene expression during different developmental stages of mouse and human fetal retinas. Methods: We performed a comprehensive transcriptomic analysis of all the annotated human and mouse DUBs (87) in the developing mouse retina at several embryonic and postnatal time points compared with the transcriptome of the fetal human retina. An integrated comparison of data from transcriptomics, reported chromatin immunoprecipitation sequencing (ChIP-seq) of CRX and NRL transcription factors, and the phenotypic retinal alterations in different animal models is presented. Results: Several DUB genes are differentially expressed during the development of the mouse and human retinas in relation to proliferation or differentiation stages. Some DUB genes appear to be distinctly expressed during the differentiation stages of rod and cone photoreceptor cells, and their expression is altered in mouse knockout models of relevant photoreceptor transcription factors. We complemented this RNA-sequencing (RNA-seq) analysis with other reported expression and phenotypic data to underscore the involvement of DUBs in cell fate decision and photoreceptor differentiation. Conclusions: The present results highlight a short list of potential DUB candidates for retinal disorders, which require further study.


Asunto(s)
Enzimas Desubicuitinizantes/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Mamíferos/embriología , Mamíferos/genética , Retina/embriología , Retina/enzimología , Animales , Enzimas Desubicuitinizantes/metabolismo , Feto/metabolismo , Humanos , Ratones , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/metabolismo , Transcriptoma/genética
14.
Adv Exp Med Biol ; 1185: 513-517, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31884663

RESUMEN

Inherited retinal dystrophies (IRDs) are a broad group of neurodegenerative disorders associated with reduced or deteriorating visual system. In the retina, cells are under constant oxidative stress, leading to elevated reactive oxygen species (ROS) generation that induces mitochondrial dysfunction and alteration of the mitochondrial network. This mitochondrial dysfunction combined with mutations in mitochondrial DNA and nuclear genes makes photoreceptors and retinal ganglion cells more susceptible to cell death. In this minireview, we focus on mitochondrial dynamics and their contribution to neuronal degeneration underlying IRDs, with particular attention to Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (DOA), and propose targeting cell resilience and mitochondrial dynamics modulators as potential therapeutic approaches for retinal disorders.


Asunto(s)
Mitocondrias/fisiología , Atrofia Óptica Autosómica Dominante/patología , Atrofia Óptica Hereditaria de Leber/patología , Estrés Oxidativo , Retina/citología , ADN Mitocondrial/genética , Humanos
15.
Adv Exp Med Biol ; 1185: 215-219, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31884614

RESUMEN

During the last 20 years, our group has focused on identifying the genes and mutations causative of inherited retinal dystrophies (IRDs). By applying massive sequencing approaches (NGS) in more than 500 familial and sporadic cases, we attained high diagnostic efficiency (85%) with a custom target gene panel and over 75% using whole exome sequencing (WES). Close to 40% of pathogenic alleles are novel mutations, which demand specific in silico tests and in vitro assays. Notably, missense variants are by far the most common type of mutation identified (around 40%), with small in-frame indels being less frequent (2%). To fill the gap of unsolved cases, when no candidate gene or only a single pathogenic allele has been identified, additional scientific and technical issues remain to be addressed. Reliable detection of genomic rearrangements and copy number variants (partial or complete), deep intronic mutations, variants that cause aberrant splicing events in retina-specific transcripts, functional assessment of hypomorphic missense alleles, mutations in regulatory sequences, the contribution of modifier genes to the IRD phenotype, and detection of low heteroplasmy mtDNA mutations are among the new challenges to be met.


Asunto(s)
Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Alelos , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/genética , Humanos , Intrones , Mutación Missense , Fenotipo
16.
Yale J Biol Med ; 90(4): 673-681, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29259532

RESUMEN

In December 2016, the Opinion Group of the Bioethics and Law Observatory (OBD) of the University of Barcelona launched a Declaration on Bioethics and Gene Editing in Humans analyzing the use of genome editing techniques and their social, ethical, and legal implications through a multidisciplinary approach. It focuses on CRISPR/Cas9, a genome modification technique that enables researchers to edit specific sections of the DNA sequence of humans and other living beings. This technique has generated expectations and worries that deserve an interdisciplinary analysis and an informed social debate. The research work developed by the OBD presents a set of recommendations addressed to different stakeholders and aims at being a tool to learn more about CRISPR/Cas9 while finding an appropriate ethical and legal framework for this new technology. This article gathers and compares reports that have been published in Europe and the USA since the OBD Declaration. It aims at being a tool to foster a global and interdisciplinary discussion of this new genome editing technology.


Asunto(s)
Investigación Biomédica/ética , Sistemas CRISPR-Cas , Edición Génica/ética , Bioética , Unión Europea , Humanos , Estados Unidos
17.
Future Oncol ; 12(4): 565-74, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26777062

RESUMEN

Deubiquitinating enzymes (DUBs) are specialized proteins that can recognize ubiquitinated proteins, and after direct interaction, deconjugate monomeric or polymeric ubiquitin chains, thus changing the fate of the substrates. This process is instrumental in mediating or changing downstream signaling pathways. Beside mutations and alterations in their expression levels, the activity and stability of deubiquitinating enzymes is vital for their function. SUMOylations consist of the conjugation of the small peptide SUMO to protein substrates which is very similar to ubiquitination in the mechanistic and machinery required. In this review, we will focus on how SUMOylation can regulate DUB enzymatic activity, stability or DUB interaction with partners and substrates, in cancer. Furthermore, we will discuss the impact of these recent findings in the identification of new potential tools for efficient anticancer treatment strategies.


Asunto(s)
Neoplasias/metabolismo , Sumoilación , Animales , Ataxina-3/metabolismo , Enzima Desubiquitinante CYLD , Humanos , Neoplasias/enzimología , Neoplasias/patología , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
18.
Proc Natl Acad Sci U S A ; 108(13): 5319-24, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21389270

RESUMEN

Novel organismal structures in metazoans are often undergirded by complex gene regulatory networks; as such, understanding the emergence of new structures through evolution requires reconstructing the series of evolutionary steps leading to these underlying networks. Here, we reconstruct the step-by-step assembly of the vertebrate splicing network regulated by Nova, a splicing factor that modulates alternative splicing in the vertebrate central nervous system by binding to clusters of YCAY motifs on pre-RNA transcripts. Transfection of human HEK293T cells with Nova orthologs indicated vertebrate-like splicing regulatory activity in bilaterian invertebrates, thus Nova acquired the ability to bind YCAY clusters and perform vertebrate-like splicing modulation at least before the last common ancestor of bilaterians. In situ hybridization studies in several species showed that Nova expression became restricted to CNS later on, during chordate evolution. Finally, comparative genomics studies revealed a diverse history for Nova-regulated exons, with target exons arising through both de novo exon creation and acquisition of YCAY motifs by preexisting exons throughout chordate and vertebrate history. In addition, we find that tissue-specific Nova expression patterns emerged independently in other lineages, suggesting independent assembly of tissue-specific regulatory networks.


Asunto(s)
Empalme Alternativo , Antígenos de Neoplasias/metabolismo , Encéfalo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Vertebrados/genética , Animales , Antígenos de Neoplasias/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Antígeno Ventral Neuro-Oncológico , Proteínas de Unión al ARN/genética
19.
Cells ; 13(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38534367

RESUMEN

We report a novel RPGR missense variant co-segregated with a familial X-linked retinitis pigmentosa (XLRP) case. The brothers were hemizygous for this variant, but only the proband presented with primary ciliary dyskinesia (PCD). Thus, we aimed to elucidate the role of the RPGR variant and other modifier genes in the phenotypic variability observed in the family and its impact on motile cilia. The pathogenicity of the variant on the RPGR protein was evaluated by in vitro studies transiently transfecting the mutated RPGR gene, and immunofluorescence analysis on nasal brushing samples. Whole-exome sequencing was conducted to identify potential modifier variants. In vitro studies showed that the mutated RPGR protein could not localise to the cilium and impaired cilium formation. Accordingly, RPGR was abnormally distributed in the siblings' nasal brushing samples. In addition, a missense variant in CEP290 was identified. The concurrent RPGR variant influenced ciliary mislocalisation of the protein. We provide a comprehensive characterisation of motile cilia in this XLRP family, with only the proband presenting PCD symptoms. The variant's pathogenicity was confirmed, although it alone does not explain the respiratory symptoms. Finally, the CEP290 gene may be a potential modifier for respiratory symptoms in patients with RPGR mutations.


Asunto(s)
Trastornos de la Motilidad Ciliar , Retinitis Pigmentosa , Humanos , Masculino , Trastornos de la Motilidad Ciliar/genética , Proteínas del Ojo/metabolismo , Genes Modificadores , Mutación , Retinitis Pigmentosa/genética
20.
Sci Signal ; 17(822): eabq1007, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38320000

RESUMEN

Mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neural activity. We investigated how G protein-coupled receptors (GPCRs) and G proteins control mitochondrial dynamics and trafficking. The activation of Gαq inhibited mitochondrial trafficking in neurons through a mechanism that was independent of the canonical downstream PLCß pathway. Mitoproteome analysis revealed that Gαq interacted with the Eutherian-specific mitochondrial protein armadillo repeat-containing X-linked protein 3 (Alex3) and the Miro1/Trak2 complex, which acts as an adaptor for motor proteins involved in mitochondrial trafficking along dendrites and axons. By generating a CNS-specific Alex3 knockout mouse line, we demonstrated that Alex3 was required for the effects of Gαq on mitochondrial trafficking and dendritic growth in neurons. Alex3-deficient mice had altered amounts of ER stress response proteins, increased neuronal death, motor neuron loss, and severe motor deficits. These data revealed a mammalian-specific Alex3/Gαq mitochondrial complex, which enables control of mitochondrial trafficking and neuronal death by GPCRs.


Asunto(s)
Axones , Neuronas , Animales , Ratones , Axones/metabolismo , Mamíferos/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA