Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mov Disord ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38798069

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by a CAG/CTG repeat expansion at the PPP2R2B locus. OBJECTIVE: We investigated how the CAG repeat expansion within the PPP2R2B 7B7D transcript influences the expression of Bß1 and a potential protein containing a long polyserine tract. METHODS: Transcript and protein expression were measured using quantitative PCR (qPCR) Role of Bß1 overexpression in the pathogenesis of SCA12 and Western blot, respectively, in an SK-N-MC cell model that overexpresses the full-length PPP2R2B 7B7D transcript. The apoptotic effect of a protein containing a long polyserine tract on SK-N-MC cells was evaluated using caspase 3/7 activity. RESULTS: The CAG repeat expansion increases the expression of the PPP2R2B 7B7D transcript, as well as Bß1 protein, in an SK-N-MC cell model in which the full-length PPP2R2B 7B7D transcript is overexpressed. The CAG repeat expansion within the 7B7D transcript is translated into a long polyserine tract that triggers apoptosis in SK-N-MC cells. CONCLUSIONS: The SCA12 mutation leads to overexpression of PPP2R2B Bß1 and to expression of a protein containing a long polyserine tract; both these effects potentially contribute to SCA12 pathogenesis. © 2024 International Parkinson and Movement Disorder Society.

2.
Mov Disord ; 38(12): 2230-2240, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37735923

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative disease caused by expansion of a CAG repeat in the PPP2R2B gene. OBJECTIVE: In this study, we tested the hypothesis that the PPP2R2B antisense (PPP2R2B-AS1) transcript containing a CUG repeat is expressed and contributes to SCA12 pathogenesis. METHODS: Expression of PPP2R2B-AS1 transcript was detected in SCA12 human induced pluripotent stem cells (iPSCs), iPSC-derived NGN2 neurons, and SCA12 knock-in mouse brains using strand-specific reverse transcription polymerase chain reaction. The tendency of expanded PPP2R2B-AS1 (expPPP2R2B-AS1) RNA to form foci, a marker of toxic processes involving mutant RNAs, was examined in SCA12 cell models by fluorescence in situ hybridization. The apoptotic effect of expPPP2R2B-AS1 transcripts on SK-N-MC neuroblastoma cells was evaluated by caspase 3/7 activity. Western blot was used to examine the expression of repeat associated non-ATG-initiated translation of expPPP2R2B-AS1 transcript in SK-N-MC cells. RESULTS: The repeat region in the PPP2R2B gene locus is bidirectionally transcribed in SCA12 iPSCs, iPSC-derived NGN2 neurons, and SCA12 mouse brains. Transfected expPPP2R2B-AS1 transcripts induce apoptosis in SK-N-MC cells, and the apoptotic effect may be mediated, at least in part, by the RNA secondary structure. The expPPP2R2B-AS1 transcripts form CUG RNA foci in SK-N-MC cells. expPPP2R2B-AS1 transcript is translated in the alanine open reading frame (ORF) via repeat-associated non-ATG translation, which is diminished by single-nucleotide interruptions within the CUG repeat and MBNL1 overexpression. CONCLUSIONS: These findings suggest that PPP2R2B-AS1 contributes to SCA12 pathogenesis and may therefore provide a novel therapeutic target for the disease. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Secuencias Repetitivas de Aminoácido , Ataxias Espinocerebelosas , Transcripción Genética , Células Madre Pluripotentes Inducidas , Neuronas/patología , Apoptosis/genética , Línea Celular , Secuencias Repetitivas de Aminoácido/genética , Proteínas de Unión al ARN/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Técnicas de Sustitución del Gen , Humanos , Animales , Ratones , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/fisiopatología , ARN sin Sentido/genética
3.
Mov Disord ; 36(11): 2519-2529, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34390268

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by expansion of a CAG repeat in Ataxin-2 (ATXN2) gene. The mutant ATXN2 protein with a polyglutamine tract is known to be toxic and contributes to the SCA2 pathogenesis. OBJECTIVE: Here, we tested the hypothesis that the mutant ATXN2 transcript with an expanded CAG repeat (expATXN2) is also toxic and contributes to SCA2 pathogenesis. METHODS: The toxic effect of expATXN2 transcripts on SK-N-MC neuroblastoma cells and primary mouse cortical neurons was evaluated by caspase 3/7 activity and nuclear condensation assay, respectively. RNA immunoprecipitation assay was performed to identify RNA binding proteins (RBPs) that bind to expATXN2 RNA. Quantitative PCR was used to examine if ribosomal RNA (rRNA) processing is disrupted in SCA2 and Huntington's disease (HD) human brain tissue. RESULTS: expATXN2 RNA induces neuronal cell death, and aberrantly interacts with RBPs involved in RNA metabolism. One of the RBPs, transducin ß-like protein 3 (TBL3), involved in rRNA processing, binds to both expATXN2 and expanded huntingtin (expHTT) RNA in vitro. rRNA processing is disrupted in both SCA2 and HD human brain tissue. CONCLUSION: These findings provide the first evidence of a contributory role of expATXN2 transcripts in SCA2 pathogenesis, and further support the role of expHTT transcripts in HD pathogenesis. The disruption of rRNA processing, mediated by aberrant interaction of RBPs with expATXN2 and expHTT transcripts, suggest a point of convergence in the pathogeneses of repeat expansion diseases with potential therapeutic implications. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
ARN , Ataxias Espinocerebelosas , Animales , Ataxinas/metabolismo , Encéfalo/patología , Ratones , Neuronas/metabolismo , ARN/metabolismo , Proteínas de Unión al ARN/genética , Ataxias Espinocerebelosas/patología
4.
Nature ; 515(7527): 414-8, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25132547

RESUMEN

Dysregulated neurodevelopment with altered structural and functional connectivity is believed to underlie many neuropsychiatric disorders, and 'a disease of synapses' is the major hypothesis for the biological basis of schizophrenia. Although this hypothesis has gained indirect support from human post-mortem brain analyses and genetic studies, little is known about the pathophysiology of synapses in patient neurons and how susceptibility genes for mental disorders could lead to synaptic deficits in humans. Genetics of most psychiatric disorders are extremely complex due to multiple susceptibility variants with low penetrance and variable phenotypes. Rare, multiply affected, large families in which a single genetic locus is probably responsible for conferring susceptibility have proven invaluable for the study of complex disorders. Here we generated induced pluripotent stem (iPS) cells from four members of a family in which a frameshift mutation of disrupted in schizophrenia 1 (DISC1) co-segregated with major psychiatric disorders and we further produced different isogenic iPS cell lines via gene editing. We showed that mutant DISC1 causes synaptic vesicle release deficits in iPS-cell-derived forebrain neurons. Mutant DISC1 depletes wild-type DISC1 protein and, furthermore, dysregulates expression of many genes related to synapses and psychiatric disorders in human forebrain neurons. Our study reveals that a psychiatric disorder relevant mutation causes synapse deficits and transcriptional dysregulation in human neurons and our findings provide new insight into the molecular and synaptic etiopathology of psychiatric disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Trastornos Mentales/patología , Sinapsis/patología , Animales , Diferenciación Celular , Fibroblastos , Glutamina/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Linaje , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Prosencéfalo/metabolismo , Prosencéfalo/patología , Unión Proteica , Sinapsis/metabolismo , Transcriptoma
5.
Neurodegener Dis ; 19(2): 78-87, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31412344

RESUMEN

BACKGROUND: Huntington's disease (HD) is a progressive neurodegenerative disorder. The striatum is one of the first brain regions that show detectable atrophy in HD. Previous studies using functional magnetic resonance imaging (fMRI) at 3 tesla (3 T) revealed reduced functional connectivity between striatum and motor cortex in the prodromal period of HD. Neuroanatomical and neurophysiological studies have suggested segregated corticostriatal pathways with distinct loops involving different cortical regions, which may be investigated using fMRI at an ultra-high field (7 T) with enhanced sensitivity compared to lower fields. OBJECTIVES: We performed fMRI at 7 T to assess functional connectivity between the striatum and several chosen cortical areas including the motor and prefrontal cortex, in order to better understand brain changes in the striatum-cortical pathways. METHOD: 13 manifest subjects (age 51 ± 13 years, cytosine-adenine-guanine [CAG] repeat 45 ± 5, Unified Huntington's Disease Rating Scale [UHDRS] motor score 32 ± 17), 8 subjects in the close-to-onset premanifest period (age 38 ± 10 years, CAG repeat 44 ± 2, UHDRS motor score 8 ± 2), 11 subjects in the far-from-onset premanifest period (age 38 ± 11 years, CAG repeat 42 ± 2, UHDRS motor score 1 ± 2), and 16 healthy controls (age 44 ± 15 years) were studied. The functional connectivity between the striatum and several cortical areas was measured by resting state fMRI at 7 T and analyzed in all participants. RESULTS: Compared to controls, functional connectivity between striatum and premotor area, supplementary motor area, inferior frontal as well as middle frontal regions was altered in HD (all p values <0.001). Specifically, decreased striatum-motor connectivity but increased striatum-prefrontal connectivity were found in premanifest HD subjects. Altered functional connectivity correlated consistently with genetic burden, but not with clinical scores. CONCLUSIONS: Differential changes in functional connectivity of striatum-prefrontal and striatum-motor circuits can be found in early and premanifest HD. This may imply a compensatory mechanism, where additional cortical regions are recruited to subserve functions that have been impaired due to HD pathology. Our results suggest the potential value of functional connectivity as a marker for future clinical trials in HD.


Asunto(s)
Cuerpo Estriado/diagnóstico por imagen , Enfermedad de Huntington/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Síntomas Prodrómicos
6.
Ann Neurol ; 80(4): 600-15, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27531668

RESUMEN

OBJECTIVE: Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by a CAG repeat expansion in the gene ataxin-2 (ATXN2). ATXN2 intermediate-length CAG expansions were identified as a risk factor for amyotrophic lateral sclerosis (ALS). The ATXN2 CAG repeat is translated into polyglutamine, and SCA2 pathogenesis has been thought to derive from ATXN2 protein containing an expanded polyglutamine tract. However, recent evidence of bidirectional transcription at multiple CAG/CTG disease loci has led us to test whether additional mechanisms of pathogenesis may contribute to SCA2. METHODS: In this work, using human postmortem tissue, various cell models, and animal models, we provide the first evidence that an antisense transcript at the SCA2 locus contributes to SCA2 pathogenesis. RESULTS: We demonstrate the expression of a transcript, containing the repeat as a CUG tract, derived from a gene (ATXN2-AS) directly antisense to ATXN2. ATXN2-AS transcripts with normal and expanded CUG repeats are expressed in human postmortem SCA2 brains, human SCA2 fibroblasts, induced SCA2 pluripotent stem cells, SCA2 neural stem cells, and lymphoblastoid lines containing an expanded ATXN2 allele associated with ALS. ATXN2-AS transcripts with a CUG repeat expansion are toxic in an SCA2 cell model and form RNA foci in SCA2 cerebellar Purkinje cells. Finally, we detected missplicing of amyloid beta precursor protein and N-methyl-D-aspartate receptor 1 in SCA2 brains, consistent with findings in other diseases characterized by RNA-mediated pathogenesis. INTERPRETATION: These results suggest that ATXN2-AS has a role in SCA2 and possibly ALS pathogenesis, and may therefore provide a novel therapeutic target for these diseases. Ann Neurol 2016;80:600-615.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ataxina-2/genética , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Adulto , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Ratones Transgénicos , Células-Madre Neurales , Adulto Joven
7.
J Proteome Res ; 15(9): 3266-83, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27486686

RESUMEN

The pathogenesis of HD and HDL2, similar progressive neurodegenerative disorders caused by expansion mutations, remains incompletely understood. No systematic quantitative proteomics studies, assessing global changes in HD or HDL2 human brain, were reported. To address this deficit, we used a stable isotope labeling-based approach to quantify the changes in protein abundances in the cortex of 12 HD and 12 control cases and, separately, of 6 HDL2 and 6 control cases. The quality of the tissues was assessed to minimize variability due to post mortem autolysis. We applied a robust median sweep algorithm to quantify protein abundance and performed statistical inference using moderated test statistics. 1211 proteins showed statistically significant fold changes between HD and control tissues; the differences in selected proteins were verified by Western blotting. Differentially abundant proteins were enriched in cellular pathways previously implicated in HD, including Rho-mediated, actin cytoskeleton and integrin signaling, mitochondrial dysfunction, endocytosis, axonal guidance, DNA/RNA processing, and protein transport. The abundance of 717 proteins significantly differed between control and HDL2 brain. Comparative analysis of the disease-associated changes in the HD and HDL2 proteomes revealed that similar pathways were altered, suggesting the commonality of pathogenesis between the two disorders.


Asunto(s)
Encéfalo/metabolismo , Corea/patología , Trastornos del Conocimiento/patología , Demencia/patología , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Enfermedad de Huntington/patología , Proteómica/métodos , Algoritmos , Western Blotting , Estudios de Casos y Controles , Humanos , Marcaje Isotópico , Redes y Vías Metabólicas , Proteínas/análisis
8.
Hum Mol Genet ; 23(23): 6302-17, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25035419

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. Disease pathogenesis derives, at least in part, from the long polyglutamine tract encoded by mutant HTT. Therefore, considerable effort has been dedicated to the development of therapeutic strategies that significantly reduce the expression of the mutant HTT protein. Antisense oligonucleotides (ASOs) targeted to the CAG repeat region of HTT transcripts have been of particular interest due to their potential capacity to discriminate between normal and mutant HTT transcripts. Here, we focus on phosphorodiamidate morpholino oligomers (PMOs), ASOs that are especially stable, highly soluble and non-toxic. We designed three PMOs to selectively target expanded CAG repeat tracts (CTG22, CTG25 and CTG28), and two PMOs to selectively target sequences flanking the HTT CAG repeat (HTTex1a and HTTex1b). In HD patient-derived fibroblasts with expanded alleles containing 44, 77 or 109 CAG repeats, HTTex1a and HTTex1b were effective in suppressing the expression of mutant and non-mutant transcripts. CTGn PMOs also suppressed HTT expression, with the extent of suppression and the specificity for mutant transcripts dependent on the length of the targeted CAG repeat and on the CTG repeat length and concentration of the PMO. PMO CTG25 reduced HTT-induced cytotoxicity in vitro and suppressed mutant HTT expression in vivo in the N171-82Q transgenic mouse model. Finally, CTG28 reduced mutant HTT expression and improved the phenotype of Hdh(Q7/Q150) knock-in HD mice. These data demonstrate the potential of PMOs as an approach to suppressing the expression of mutant HTT.


Asunto(s)
Morfolinos/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Animales , Secuencia de Bases , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Ratones , Ratones Transgénicos , Morfolinos/química , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Oligonucleótidos Antisentido/química , ARN Mensajero/metabolismo , Expansión de Repetición de Trinucleótido
9.
Curr Opin Neurol ; 29(6): 735-742, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27748686

RESUMEN

PURPOSE OF REVIEW: Spinocerebellar ataxia type 12 (SCA12) is a rare autosomal dominant neurodegenerative disease characterized by tremor, gait abnormalities, and neuropsychiatric syndromes. The location of the causative CAG/CTG expansion mutation in PPP2R2B, a gene encoding regulatory units of the protein phosphatase 2A, may provide unique insights into the pathogenesis of neurodegeneration. RECENT FINDINGS: The first neuropathological examination of a brain from an SCA12 patient revealed both cerebellar and cerebral cortical atrophy, with a noted loss of Purkinje cells and no evidence of polyglutamine aggregates. Molecular investigations have demonstrated considerable complexity of PPP2R2B, which appears to encode at least eight isoforms each with a different N-terminal region. The repeat potentially influences PPP2R2B expression, and is itself included in several splice variants, falling within an open reading frame of at least one of these variants. SUMMARY: The current data suggest at least two nonmutually exclusive hypotheses of SCA12 neurodegeneration. First, the repeat may influence PPP2R2B expression, by altering promoter activity, splicing, or transcript stability. This hypothesis would predict that the mutation changes the regulation of protein phosphatase 2A, with implications for the phosphoproteome. Alternatively, the repeat itself may be expressed and have toxic properties, though perhaps not through polyglutamine tracts. Either hypothesis may provide novel insight into the pathogenesis of neurodegeneration.


Asunto(s)
Encéfalo/patología , Mutación , Proteínas del Tejido Nervioso/genética , Proteína Fosfatasa 2/genética , Ataxias Espinocerebelosas/etiología , Humanos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
10.
Curr Opin Neurol ; 29(6): 743-748, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27749395

RESUMEN

PURPOSE OF REVIEW: Huntington's disease-like 2 (HDL2) is a rare, progressive, autosomal dominant neurodegenerative disorder that genetically, clinically, and pathologically closely resembles Huntington's disease. We review HDL2 pathogenic mechanisms and examine the implications of these mechanisms for Huntington's disease and related diseases. RECENT FINDINGS: HDL2 is caused by a CTG/CAG repeat expansion in junctophilin-3. Available data from cell and animal models and human brain suggest that HDL2 is a complex disease in which transcripts and proteins expressed bidirectionally from the junctophilin-3 locus contribute to pathogenesis through both gain-and loss-of-function mechanisms. Recent advances indicate that the pathogenesis of Huntington's disease is equally complex, despite the emphasis on toxic gain-of-function properties of the mutant huntingtin protein. SUMMARY: Studies examining in parallel the genetic, clinical, neuropathological, and mechanistic similarities between Huntington's disease and HDL2 have begun to identify points of convergence between the pathogenic pathways of the two diseases. Comparisons to other diseases that are phenotypically or genetically related to Huntington's disease and HDL2 will likely reveal additional common pathways. The ultimate goal is to identify shared therapeutic targets and eventually develop therapies that may, at least in part, be effective across multiple similar rare diseases, an essential approach given the scarcity of resources for basic and translational research.


Asunto(s)
Encéfalo/patología , Corea/etiología , Trastornos del Conocimiento/etiología , Demencia/etiología , Trastornos Heredodegenerativos del Sistema Nervioso/etiología , Proteínas de la Membrana/genética , Repeticiones de Trinucleótidos , Animales , Corea/genética , Corea/patología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/patología , Demencia/genética , Demencia/patología , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Humanos
11.
J Nerv Ment Dis ; 204(8): 620-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26828911

RESUMEN

Mobile devices, digital technologies, and web-based applications-known collectively as eHealth (electronic health)-could improve health care delivery for costly, chronic diseases such as schizophrenia. Pharmacologic and psychosocial therapies represent the primary treatment for individuals with schizophrenia; however, extensive resources are required to support adherence, facilitate continuity of care, and prevent relapse and its sequelae. This paper addresses the use of eHealth in the management of schizophrenia based on a roundtable discussion with a panel of experts, which included psychiatrists, a medical technology innovator, a mental health advocate, a family caregiver, a health policy maker, and a third-party payor. The expert panel discussed the uses, benefits, and limitations of emerging eHealth with the capability to integrate care and extend service accessibility, monitor patient status in real time, enhance medication adherence, and empower patients to take a more active role in managing their disease. In summary, to support this technological future, eHealth requires significant research regarding implementation, patient barriers, policy, and funding.


Asunto(s)
Atención a la Salud/métodos , Aceptación de la Atención de Salud , Esquizofrenia/terapia , Telemedicina/métodos , Humanos
12.
JAMA ; 316(1): 40-50, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27380342

RESUMEN

IMPORTANCE: Deutetrabenazine is a novel molecule containing deuterium, which attenuates CYP2D6 metabolism and increases active metabolite half-lives and may therefore lead to stable systemic exposure while preserving key pharmacological activity. OBJECTIVE: To evaluate efficacy and safety of deutetrabenazine treatment to control chorea associated with Huntington disease. DESIGN, SETTING, AND PARTICIPANTS: Ninety ambulatory adults diagnosed with manifest Huntington disease and a baseline total maximal chorea score of 8 or higher (range, 0-28; lower score indicates less chorea) were enrolled from August 2013 to August 2014 and randomized to receive deutetrabenazine (n = 45) or placebo (n = 45) in a double-blind fashion at 34 Huntington Study Group sites. INTERVENTIONS: Deutetrabenazine or placebo was titrated to optimal dose level over 8 weeks and maintained for 4 weeks, followed by a 1-week washout. MAIN OUTCOMES AND MEASURES: Primary end point was the total maximal chorea score change from baseline (the average of values from the screening and day-0 visits) to maintenance therapy (the average of values from the week 9 and 12 visits) obtained by in-person visits. This study was designed to detect a 2.7-unit treatment difference in scores. The secondary end points, assessed hierarchically, were the proportion of patients who achieved treatment success on the Patient Global Impression of Change (PGIC) and on the Clinical Global Impression of Change (CGIC), the change in 36-Item Short Form- physical functioning subscale score (SF-36), and the change in the Berg Balance Test. RESULTS: Ninety patients with Huntington disease (mean age, 53.7 years; 40 women [44.4%]) were enrolled. In the deutetrabenazine group, the mean total maximal chorea scores improved from 12.1 (95% CI, 11.2-12.9) to 7.7 (95% CI, 6.5-8.9), whereas in the placebo group, scores improved from 13.2 (95% CI, 12.2-14.3) to 11.3 (95% CI, 10.0-12.5); the mean between-group difference was -2.5 units (95% CI, -3.7 to -1.3) (P < .001). Treatment success, as measured by the PGIC, occurred in 23 patients (51%) in the deutetrabenazine group vs 9 (20%) in the placebo group (P = .002). As measured by the CGIC, treatment success occurred in 19 patients (42%) in the deutetrabenazine group vs 6 (13%) in the placebo group (P = .002). In the deutetrabenazine group, the mean SF-36 physical functioning subscale scores decreased from 47.5 (95% CI, 44.3-50.8) to 47.4 (44.3-50.5), whereas in the placebo group, scores decreased from 43.2 (95% CI, 40.2-46.3) to 39.9 (95% CI, 36.2-43.6), for a treatment benefit of 4.3 (95% CI, 0.4 to 8.3) (P = .03). There was no difference between groups (mean difference of 1.0 unit; 95% CI, -0.3 to 2.3; P = .14), for improvement in the Berg Balance Test, which improved by 2.2 units (95% CI, 1.3-3.1) in the deutetrabenazine group and by 1.3 units (95% CI, 0.4-2.2) in the placebo group. Adverse event rates were similar for deutetrabenazine and placebo, including depression, anxiety, and akathisia. CONCLUSIONS AND RELEVANCE: Among patients with chorea associated with Huntington disease, the use of deutetrabenazine compared with placebo resulted in improved motor signs at 12 weeks. Further research is needed to assess the clinical importance of the effect size and to determine longer-term efficacy and safety. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01795859.


Asunto(s)
Inhibidores de Captación Adrenérgica/uso terapéutico , Corea/tratamiento farmacológico , Enfermedad de Huntington/tratamiento farmacológico , Tetrabenazina/uso terapéutico , Citocromo P-450 CYP2D6/metabolismo , Método Doble Ciego , Esquema de Medicación , Femenino , Humanos , Quimioterapia de Mantención/métodos , Masculino , Persona de Mediana Edad , Tetrabenazina/análogos & derivados , Resultado del Tratamiento
13.
Am J Hum Genet ; 90(3): 434-44, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22387017

RESUMEN

Age at the onset of motor symptoms in Huntington disease (HD) is determined largely by the length of a CAG repeat expansion in HTT but is also influenced by other genetic factors. We tested whether common genetic variation near the mutation site is associated with differences in the distribution of expanded CAG alleles or age at the onset of motor symptoms. To define disease-associated single-nucleotide polymorphisms (SNPs), we compared 4p16.3 SNPs in HD subjects with population controls in a case:control strategy, which revealed that the strongest signals occurred at a great distance from the HD mutation as a result of "synthetic association" with SNP alleles that are of low frequency in population controls. Detailed analysis delineated a prominent ancestral haplotype that accounted for ∼50% of HD chromosomes and extended to at least 938 kb on about half of these. Together, the seven most abundant haplotypes accounted for ∼83% of HD chromosomes. Neither the extended shared haplotype nor the individual local HTT haplotypes were associated with altered CAG-repeat length distribution or residual age at the onset of motor symptoms, arguing against modification of these disease features by common cis-regulatory elements. Similarly, the 11 most frequent control haplotypes showed no trans-modifier effect on age at the onset of motor symptoms. Our results argue against common local regulatory variation as a factor influencing HD pathogenesis, suggesting that genetic modifiers be sought elsewhere in the genome. They also indicate that genome-wide association analysis with a small number of cases can be effective for regional localization of genetic defects, even when a founder effect accounts for only a fraction of the disorder.


Asunto(s)
Cromosomas Humanos Par 4 , Enfermedad de Huntington/genética , Edad de Inicio , Alelos , Estudios de Casos y Controles , Efecto Fundador , Estudio de Asociación del Genoma Completo/métodos , Haplotipos , Humanos , Mutación , Polimorfismo de Nucleótido Simple , Repeticiones de Trinucleótidos
14.
Mov Disord ; 30(13): 1813-1824, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26340331

RESUMEN

OBJECTIVE: SCA12 is a progressive autosomal-dominant disorder, caused by a CAG/CTG repeat expansion in PPP2R2B on chromosome 5q32, and characterized by tremor, gait ataxia, hyperreflexia, dysmetria, abnormal eye movements, anxiety, depression, and sometimes cognitive impairment. Neuroimaging has demonstrated cerebellar and cortical atrophy. We now present the neuropathology of the first autopsied SCA12 brain and utilize cell models to characterize potential mechanisms of SCA12 neurodegeneration. METHODS: A fixed SCA12 brain was examined using gross, microscopic, and immunohistochemical methods. The effect of the repeat expansion on PPP2R2B Bß1 expression was examined in multiple cell types by transient transfection of constructs containing the PPP2R2B Bß1 promoter region attached to a luciferase reporter. The neurotoxic effect of PPP2R2B overexpression was examined in transfected rat primary neurons. RESULTS: Neuropathological investigation revealed enlarged ventricles, marked cerebral cortical atrophy and Purkinje cell loss, less-prominent cerebellar and pontine atrophy, and neuronal intranuclear ubiquitin-positive inclusions, consistent with Marinesco bodies, which did not stain for long polyglutamine tracts, alpha-synuclein, tau, or transactive response DNA-binding protein 43. Reporter assays demonstrated that the region of PPP2R2B containing the repeat functions as a promoter, and that promoter activity increases with longer repeat length and is dependent on cell type, repeat sequence, and sequence flanking the repeat. Overexpression of PPP2R2B in primary cortical neurons disrupted normal morphology. CONCLUSIONS: SCA12 involves extensive, but selective, neurodegeneration distinct from Alzheimer's disease, synucleinopathies, tauopathies, and glutamine expansion diseases. SCA12 neuropathology may arise from the neurotoxic effect of repeat-expansion-induced overexpression of PPP2R2B.


Asunto(s)
Encéfalo/patología , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteína Fosfatasa 2/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Repeticiones de Trinucleótidos/genética , Animales , Células Cultivadas , Corteza Cerebral/citología , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Neuritas/metabolismo , Neuritas/patología , Neuronas/patología , ARN Mensajero/metabolismo , Ratas , Transfección
15.
Hum Brain Mapp ; 35(3): 792-809, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23281100

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder that involves preferential atrophy in the striatal complex and related subcortical nuclei. In this article, which is based on a dataset extracted from the PREDICT-HD study, we use statistical shape analysis with deformation markers obtained through "Large Deformation Diffeomorphic Metric Mapping" of cortical surfaces to highlight specific atrophy patterns in the caudate, putamen, and globus pallidus, at different prodromal stages of the disease. On the basis of the relation to cortico-basal ganglia circuitry, we propose that statistical shape analysis, along with other structural and functional imaging studies, may help expand our understanding of the brain circuitry affected and other aspects of the neurobiology of HD, and also guide the most effective strategies for intervention.


Asunto(s)
Ganglios Basales/patología , Enfermedad de Huntington/patología , Imagen por Resonancia Magnética/métodos , Adulto , Atrofia/patología , Femenino , Humanos , Imagen por Resonancia Magnética/instrumentación , Masculino , Persona de Mediana Edad , Síntomas Prodrómicos
16.
Mov Disord ; 29(3): 396-401, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23847161

RESUMEN

BACKGROUND: Neurovascular alterations have been implicated in the pathophysiology of Huntington's disease (HD). Because arterioles are most responsive to metabolic alterations, arteriolar cerebral blood volume (CBVa) is an important indicator of cerebrovascular regulation. The objective of this pilot study was to investigate potential neurovascular (CBVa ) abnormality in prodromal-HD patients and compare it with the widely used imaging marker: brain atrophy. METHODS: CBVa and brain volumes were measured with ultra-high-field (7.0-Telsa) magnetic resonance imaging in seven prodromal-HD patients and nine age-matched controls. RESULTS: Cortical CBVa was elevated significantly in prodromal-HD patients compared with controls (relative difference, 38.5%; effect size, 1.48). Significant correlations were found between CBVa in the frontal cortex and genetic measures. By contrast, no significant brain atrophy was detected in the prodromal-HD patients. CONCLUSIONS: CBVa may be abnormal in prodromal-HD, even before substantial brain atrophy occurs. Further investigation with a larger cohort and longitudinal follow-up is merited to determine whether CBVa could be used as a potential biomarker for clinical trials.


Asunto(s)
Volumen Sanguíneo/fisiología , Enfermedad de Huntington/sangre , Enfermedad de Huntington/patología , Adulto , Anciano , Atrofia/patología , Biomarcadores/sangre , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Proyectos Piloto
18.
Stem Cell Res ; 77: 103441, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759410

RESUMEN

Spinocerebellar ataxia type 12 (SCA12) is caused by a CAG expansion mutation in PPP2R2B, a gene encoding brain-specific regulatory units of protein phosphatase 2A (PP2A); while normal alleles carry 4 to 31 triplets, the disease alleles carry 43 to 78 triplets. Here, by CRISPR/Cas9n genome editing, we have generated a human heterozygous SCA12 iPSC line with 73 triplets for the mutant allele. The heterozygous SCA12 iPSCs have normal karyotype, express pluripotency markers and are able to differentiate into the three germ layers.


Asunto(s)
Edición Génica , Heterocigoto , Células Madre Pluripotentes Inducidas , Mutación , Ataxias Espinocerebelosas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Edición Génica/métodos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Línea Celular , Sistemas CRISPR-Cas/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas del Tejido Nervioso
19.
Nat Rev Neurol ; 20(1): 36-49, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38114648

RESUMEN

Huntington disease (HD)-like 2 (HDL2) is a rare genetic disease caused by an expanded trinucleotide repeat in the JPH3 gene (encoding junctophilin 3) that shows remarkable clinical similarity to HD. To date, HDL2 has been reported only in patients with definite or probable African ancestry. A single haplotype background is shared by patients with HDL2 from different populations, supporting a common African origin for the expansion mutation. Nevertheless, outside South Africa, reports of patients with HDL2 in Africa are scarce, probably owing to limited clinical services across the continent. Systematic comparisons of HDL2 and HD have revealed closely overlapping motor, cognitive and psychiatric features and similar patterns of cerebral and striatal atrophy. The pathogenesis of HDL2 remains unclear but it is proposed to occur through several mechanisms, including loss of protein function and RNA and/or protein toxicity. This Review summarizes our current knowledge of this African-specific HD phenocopy and highlights key areas of overlap between HDL2 and HD. Given the aforementioned similarities in clinical phenotype and pathology, an improved understanding of HDL2 could provide novel insights into HD and other neurodegenerative and/or trinucleotide repeat expansion disorders.


Asunto(s)
Corea , Trastornos del Conocimiento , Demencia , Enfermedad de Huntington , Humanos , Enfermedad de Huntington/metabolismo , Corea/complicaciones , Corea/genética , Corea/patología , Demencia/genética , Trastornos del Conocimiento/patología
20.
Schizophr Res ; 267: 141-149, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547716

RESUMEN

Tobacco smoking is highly prevalent in persons with psychosis and is the leading cause of preventable mortality in this population. Less is known about tobacco smoking in persons with first episode psychosis (FEP) and there have been no estimates about the prevalence of nicotine vaping in FEP. This study reports rates of tobacco smoking and nicotine vaping in young people with FEP enrolled in Coordinated Specialty Care programs in Pennsylvania and Maryland. Using data collected from 2021 to 2023, we examined lifetime and recent smoking and vaping and compared smokers and vapers to nonusers on symptoms, functioning, and substance use. The sample included 445 participants aged 13-35 with recent psychosis onset. Assessments were collected by program staff. Overall, 28 % of participants engaged in either smoking or vaping within 30 days of the admission assessment. Smokers and vapers were disproportionately male, cannabis users, and had lower negative symptom severity than non-smokers. Vapers had higher role and social functioning. Both smoking and vaping were related to a longer time from psychosis onset to program enrollment. We compare these findings to previous studies and suggest steps for addressing smoking and vaping in this vulnerable population.


Asunto(s)
Trastornos Psicóticos , Vapeo , Humanos , Masculino , Vapeo/epidemiología , Femenino , Trastornos Psicóticos/epidemiología , Adulto , Adulto Joven , Adolescente , Fumar Tabaco/epidemiología , Pennsylvania/epidemiología , Maryland/epidemiología , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA