Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Circulation ; 146(12): 934-954, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35983756

RESUMEN

BACKGROUND: Cytokines such as tumor necrosis factor-α (TNFα) have been implicated in cardiac dysfunction and toxicity associated with doxorubicin (DOX). Although TNFα can elicit different cellular responses, including survival or death, the mechanisms underlying these divergent outcomes in the heart remain cryptic. The E3 ubiquitin ligase TRAF2 (TNF receptor associated factor 2) provides a critical signaling platform for K63-linked polyubiquitination of RIPK1 (receptor interacting protein 1), crucial for nuclear factor-κB (NF-κB) activation by TNFα and survival. Here, we investigate alterations in TNFα-TRAF2-NF-κB signaling in the pathogenesis of DOX cardiotoxicity. METHODS: Using a combination of in vivo (4 weekly injections of DOX 5 mg·kg-1·wk-1) in C57/BL6J mice and in vitro approaches (rat, mouse, and human inducible pluripotent stem cell-derived cardiac myocytes), we monitored TNFα levels, lactate dehydrogenase, cardiac ultrastructure and function, mitochondrial bioenergetics, and cardiac cell viability. RESULTS: In contrast to vehicle-treated mice, ultrastructural defects, including cytoplasmic swelling, mitochondrial perturbations, and elevated TNFα levels, were observed in the hearts of mice treated with DOX. While investigating the involvement of TNFα in DOX cardiotoxicity, we discovered that NF-κB was readily activated by TNFα. However, TNFα-mediated NF-κB activation was impaired in cardiac myocytes treated with DOX. This coincided with loss of K63- linked polyubiquitination of RIPK1 from the proteasomal degradation of TRAF2. Furthermore, TRAF2 protein abundance was markedly reduced in hearts of patients with cancer treated with DOX. We further established that the reciprocal actions of the ubiquitinating and deubiquitinating enzymes cellular inhibitors of apoptosis 1 and USP19 (ubiquitin-specific peptidase 19), respectively, regulated the proteasomal degradation of TRAF2 in DOX-treated cardiac myocytes. An E3-ligase mutant of cellular inhibitors of apoptosis 1 (H588A) or gain of function of USP19 prevented proteasomal degradation of TRAF2 and DOX-induced cell death. Furthermore, wild-type TRAF2, but not a RING finger mutant defective for K63-linked polyubiquitination of RIPK1, restored NF-κB signaling and suppressed DOX-induced cardiac cell death. Last, cardiomyocyte-restricted expression of TRAF2 (cardiac troponin T-adeno-associated virus 9-TRAF2) in vivo protected against mitochondrial defects and cardiac dysfunction induced by DOX. CONCLUSIONS: Our findings reveal a novel signaling axis that functionally connects the cardiotoxic effects of DOX to proteasomal degradation of TRAF2. Disruption of the critical TRAF2 survival pathway by DOX sensitizes cardiac myocytes to TNFα-mediated necrotic cell death and DOX cardiotoxicity.


Asunto(s)
Cardiomiopatías , FN-kappa B , Factor 2 Asociado a Receptor de TNF , Animales , Apoptosis , Cardiomiopatías/metabolismo , Cardiotoxicidad , Enzimas Desubicuitinizantes/metabolismo , Doxorrubicina/toxicidad , Endopeptidasas , Humanos , Lactato Deshidrogenasas/metabolismo , Ratones , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Ratas , Factor 2 Asociado a Receptor de TNF/genética , Troponina T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/farmacología
2.
Mol Cell Biochem ; 478(9): 2029-2040, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36607523

RESUMEN

Anthracyclines such as doxorubicin (Dox) are widely used to treat a variety of adult and childhood cancers, however, a major limitation to many of these compounds is their propensity for inducing heart failure. A naturally occurring polyphenolic compound such as Ellagic acid (EA) has been shown by our laboratory to mitigate the cardiotoxic effects of Dox, however, the effects of EA on cancer cell viability have not been established. In this study, we explored the effects of EA alone and in combination with Dox on cancer cell viability and tumorigenesis. Herein, we show that EA induces cell cycle exit and reduces proliferation in colorectal cancer (HCT116) and breast adenocarcinoma cells (MCF7). We show that EA promotes cell cycle exit by a mechanism that inhibits mitochondrial dynamics protein Drp-1. EA treatment of HCT116 and MCF7 cells resulted in a hyperfused mitochondrial morphology that coincided with mitochondrial perturbations including loss of mitochondrial membrane potential, impaired respiratory capacity. Moreover, impaired mitochondrial function was accompanied by a reduction in cell cycle and proliferation markers, CDK1, Ki67, and Cyclin B. This resulted in a reduction in proliferation and widespread death of cancer cells. Furthermore, while Dox treatment alone promoted cell death in both HCT116 and MCF7 cancer cell lines, EA treatment lowered the effective dose of Dox to promote cell death. Hence, the findings of the present study reveal a previously unreported anti-tumor property of EA that impinges on mitochondrial dynamics protein, Drp-1 which is crucial for cell division and tumorigenesis. The ability of EA to lower the therapeutic threshold of Dox for inhibiting cancer cell growth may prove beneficial in reducing cardiotoxicity in cancer patients undergoing anthracycline therapy.


Asunto(s)
Ácido Elágico , Neoplasias , Humanos , Niño , Ácido Elágico/farmacología , Dinámicas Mitocondriales , Neoplasias/tratamiento farmacológico , Doxorrubicina/farmacología , Antibióticos Antineoplásicos/farmacología , Proteínas Mitocondriales , Proliferación Celular , Carcinogénesis , Apoptosis
3.
Hum Mol Genet ; 24(22): 6530-9, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26358776

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG repeat in the IT15 gene that encodes the protein huntingtin (htt). Evidence shows that mutant htt causes mitochondrial depolarization and fragmentation, but the underlying molecular mechanism has yet to be clarified. Bax/Bak and BNip3 are pro-apoptotic members of the Bcl-2 family protein whose activation triggers mitochondrial depolarization and fragmentation inducing cell death. Evidence suggests that Bax/Bak and BNip3 undergo activation upon mutant htt expression but whether these proteins are required for mitochondrial depolarization and fragmentation induced by mutant htt is unclear. Our results show that BNip3 knock-out cells are protected from mitochondrial damage and cell death induced by mutant htt whereas Bax/Bak knock-out cells are not. Moreover, deletion of BNip3 C-terminal transmembrane domain, required for mitochondrial targeting, suppresses mitochondrial depolarization and fragmentation in a cell culture model of HD. Hence, our results suggest that changes in mitochondrial morphology and transmembrane potential, induced by mutant htt protein, are dependent and linked to BNip3 and not to Bax/Bak activation. These results provide new compelling evidence that underlies the molecular mechanisms by which mutant htt causes mitochondrial dysfunction and cell death, suggesting BNip3 as a potential target for HD therapy.


Asunto(s)
Enfermedad de Huntington/genética , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Células Cultivadas , Técnicas de Sustitución del Gen , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Potencial de la Membrana Mitocondrial , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Proto-Oncogénicas/genética , Proteína X Asociada a bcl-2/genética
4.
Proc Natl Acad Sci U S A ; 111(51): E5537-44, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25489073

RESUMEN

Doxorubicin (DOX) is widely used for treating human cancers, but can induce heart failure through an undefined mechanism. Herein we describe a previously unidentified signaling pathway that couples DOX-induced mitochondrial respiratory chain defects and necrotic cell death to the BH3-only protein Bcl-2-like 19 kDa-interacting protein 3 (Bnip3). Cellular defects, including vacuolization and disrupted mitochondria, were observed in DOX-treated mice hearts. This coincided with mitochondrial localization of Bnip3, increased reactive oxygen species production, loss of mitochondrial membrane potential, mitochondrial permeability transition pore opening, and necrosis. Interestingly, a 3.1-fold decrease in maximal mitochondrial respiration was observed in cardiac mitochondria of mice treated with DOX. In vehicle-treated control cells undergoing normal respiration, the respiratory chain complex IV subunit 1 (COX1) was tightly bound to uncoupling protein 3 (UCP3), but this complex was disrupted in cells treated with DOX. Mitochondrial dysfunction induced by DOX was accompanied by contractile failure and necrotic cell death. Conversely, shRNA directed against Bnip3 or a mutant of Bnip3 defective for mitochondrial targeting abrogated DOX-induced loss of COX1-UCP3 complexes and respiratory chain defects. Finally, Bnip3(-/-) mice treated with DOX displayed relatively normal mitochondrial morphology, respiration, and mortality rates comparable to those of saline-treated WT mice, supporting the idea that Bnip3 underlies the cardiotoxic effects of DOX. These findings reveal a new signaling pathway in which DOX-induced mitochondrial respiratory chain defects and necrotic cell death are mutually dependent on and obligatorily linked to Bnip3 gene activation. Interventions that antagonize Bnip3 may prove beneficial in preventing mitochondrial injury and heart failure in cancer patients undergoing chemotherapy.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Muerte Celular/efectos de los fármacos , Doxorrubicina/toxicidad , Proteínas de la Membrana/fisiología , Mitocondrias Cardíacas/efectos de los fármacos , Proteínas Mitocondriales/fisiología , Miocitos Cardíacos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Células Cultivadas , Transporte de Electrón/efectos de los fármacos , Ratones , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/ultraestructura , Ratas Sprague-Dawley
5.
Cardiovasc Res ; 120(2): 164-173, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38165268

RESUMEN

AIMS: The mitochondrial dynamics protein Mitofusin 2 (MFN2) coordinates critical cellular processes including mitochondrial bioenergetics, quality control, and cell viability. The NF-κB kinase IKKß suppresses mitochondrial injury in doxorubicin cardiomyopathy, but the underlying mechanism is undefined. METHODS AND RESULTS: Herein, we identify a novel signalling axis that functionally connects IKKß and doxorubicin cardiomyopathy to a mechanism that impinges upon the proteasomal stabilization of MFN2. In contrast to vehicle-treated cells, MFN2 was highly ubiquitinated and rapidly degraded by the proteasomal-regulated pathway in cardiac myocytes treated with doxorubicin. The loss of MFN2 activity resulted in mitochondrial perturbations, including increased reactive oxygen species (ROS) production, impaired respiration, and necrotic cell death. Interestingly, doxorubicin-induced degradation of MFN2 and mitochondrial-regulated cell death were contingent upon IKKß kinase activity. Notably, immunoprecipitation and proximity ligation assays revealed that IKKß interacted with MFN2 suggesting that MFN2 may be a phosphorylation target of IKKß. To explore this possibility, mass spectrometry analysis identified a novel MFN2 phospho-acceptor site at serine 53 that was phosphorylated by wild-type IKKß but not by a kinase-inactive mutant IKKßK-M. Based on these findings, we reasoned that IKKß-mediated phosphorylation of serine 53 may influence MFN2 protein stability. Consistent with this view, an IKKß-phosphomimetic MFN2 (MFN2S53D) was resistant to proteasomal degradation induced by doxorubicin whereas wild-type MFN2 and IKKß-phosphorylation defective MFN2 mutant (MFNS53A) were readily degraded in cardiac myocytes treated with doxorubicin. Concordantly, gain of function of IKKß or MFN2S53D suppressed doxorubicin-induced mitochondrial injury and cell death. CONCLUSIONS: The findings of this study reveal a novel survival pathway for IKKß that is mutually dependent upon and obligatory linked to the phosphorylation and stabilization of the mitochondrial dynamics protein MFN2.


Asunto(s)
Cardiomiopatías , Quinasa I-kappa B , Humanos , Quinasa I-kappa B/metabolismo , Transducción de Señal , Doxorrubicina , Proteínas Mitocondriales/metabolismo , Serina
6.
Nat Commun ; 13(1): 3775, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798717

RESUMEN

Mitofusins reside on the outer mitochondrial membrane and regulate mitochondrial fusion, a physiological process that impacts diverse cellular processes. Mitofusins are activated by conformational changes and subsequently oligomerize to enable mitochondrial fusion. Here, we identify small molecules that directly increase or inhibit mitofusins activity by modulating mitofusin conformations and oligomerization. We use these small molecules to better understand the role of mitofusins activity in mitochondrial fusion, function, and signaling. We find that mitofusin activation increases, whereas mitofusin inhibition decreases mitochondrial fusion and functionality. Remarkably, mitofusin inhibition also induces minority mitochondrial outer membrane permeabilization followed by sub-lethal caspase-3/7 activation, which in turn induces DNA damage and upregulates DNA damage response genes. In this context, apoptotic death induced by a second mitochondria-derived activator of caspases (SMAC) mimetic is potentiated by mitofusin inhibition. These data provide mechanistic insights into the function and regulation of mitofusins as well as small molecules to pharmacologically target mitofusins.


Asunto(s)
GTP Fosfohidrolasas , Mitocondrias , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Transducción de Señal
7.
Autophagy ; 17(11): 3794-3812, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34085589

RESUMEN

Cardiac function is highly reliant on mitochondrial oxidative metabolism and quality control. The circadian Clock gene is critically linked to vital physiological processes including mitochondrial fission, fusion and bioenergetics; however, little is known of how the Clock gene regulates these vital processes in the heart. Herein, we identified a putative circadian CLOCK-mitochondrial interactome that gates an adaptive survival response during myocardial ischemia. We show by transcriptome and gene ontology mapping in CLOCK Δ19/Δ19 mouse that Clock transcriptionally coordinates the efficient removal of damaged mitochondria during myocardial ischemia by directly controlling transcription of genes required for mitochondrial fission, fusion and macroautophagy/autophagy. Loss of Clock gene activity impaired mitochondrial turnover resulting in the accumulation of damaged reactive oxygen species (ROS)-producing mitochondria from impaired mitophagy. This coincided with ultrastructural defects to mitochondria and impaired cardiac function. Interestingly, wild type CLOCK but not mutations of CLOCK defective for E-Box binding or interaction with its cognate partner ARNTL/BMAL-1 suppressed mitochondrial damage and cell death during acute hypoxia. Interestingly, the autophagy defect and accumulation of damaged mitochondria in CLOCK-deficient cardiac myocytes were abrogated by restoring autophagy/mitophagy. Inhibition of autophagy by ATG7 knockdown abrogated the cytoprotective effects of CLOCK. Collectively, our results demonstrate that CLOCK regulates an adaptive stress response critical for cell survival by transcriptionally coordinating mitochondrial quality control mechanisms in cardiac myocytes. Interdictions that restore CLOCK activity may prove beneficial in reducing cardiac injury in individuals with disrupted circadian CLOCK.Abbreviations: ARNTL/BMAL1: aryl hydrocarbon receptor nuclear translocator-like; ATG14: autophagy related 14; ATG7: autophagy related 7; ATP: adenosine triphosphate; BCA: bovine serum albumin; BECN1: beclin 1, autophagy related; bHLH: basic helix- loop-helix; CLOCK: circadian locomotor output cycles kaput; CMV: cytomegalovirus; COQ5: coenzyme Q5 methyltransferase; CQ: chloroquine; CRY1: cryptochrome 1 (photolyase-like); DNM1L/DRP1: dynamin 1-like; EF: ejection fraction; EM: electron microscopy; FS: fractional shortening; GFP: green fluorescent protein; HPX: hypoxia; i.p.: intraperitoneal; I-R: ischemia-reperfusion; LAD: left anterior descending; LVIDd: left ventricular internal diameter diastolic; LVIDs: left ventricular internal diameter systolic; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFN2: mitofusin 2; MI: myocardial infarction; mPTP: mitochondrial permeability transition pore; NDUFA4: Ndufa4, mitochondrial complex associated; NDUFA8: NADH: ubiquinone oxidoreductase subunit A8; NMX: normoxia; OCR: oxygen consumption rate; OPA1: OPA1, mitochondrial dynamin like GTPase; OXPHOS: oxidative phosphorylation; PBS: phosphate-buffered saline; PER1: period circadian clock 1; PPARGC1A/PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; qPCR: quantitative real-time PCR; RAB7A: RAB7, member RAS oncogene family; ROS: reactive oxygen species; RT: room temperature; shRNA: short hairpin RNA; siRNA: small interfering RNA; TFAM: transcription factor A, mitochondrial; TFEB: transcription factor EB; TMRM: tetra-methylrhodamine methyl ester perchlorate; WT: wild -type; ZT: zeitgeber time.


Asunto(s)
Proteínas CLOCK/fisiología , Supervivencia Celular , Isquemia/metabolismo , Mitofagia , Miocitos Cardíacos/fisiología , Animales , Proteínas CLOCK/metabolismo , Supervivencia Celular/fisiología , Isquemia/fisiopatología , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Mitofagia/fisiología , Miocitos Cardíacos/metabolismo
8.
Cardiovasc Res ; 116(6): 1161-1174, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31566215

RESUMEN

AIMS: The chemotherapy drug doxorubicin (Dox) is commonly used for treating a variety of human cancers; however, it is highly cardiotoxic and induces heart failure. We previously reported that the Bcl-2 mitochondrial death protein Bcl-2/19kDa interaction protein 3 (Bnip3), is critical for provoking mitochondrial perturbations and necrotic cell death in response to Dox; however, the underlying mechanisms had not been elucidated. Herein, we investigated mechanism that drives Bnip3 gene activation and downstream effectors of Bnip3-mediated mitochondrial perturbations and cell death in cardiac myocytes treated with Dox. METHODS AND RESULTS: Nuclear factor-κB (NF-κB) signalling, which transcriptionally silences Bnip3 activation under basal states in cardiac myocytes was dramatically reduced following Dox treatment. This was accompanied by Bnip3 gene activation, mitochondrial injury including calcium influx, permeability transition pore (mPTP) opening, loss of nuclear high mobility group protein 1, reactive oxygen species production, and cell death. Interestingly, impaired NF-κB signalling in cells treated with Dox was accompanied by protein complexes between Bnip3 and cyclophilin D (CypD). Notably, Bnip3-mediated mPTP opening was suppressed by inhibition of CypD-demonstrating that CypD functionally operates downstream of Bnip3. Moreover, restoring IKKß-NF-κB activity in cardiac myocytes treated with Dox suppressed Bnip3 expression, mitochondrial perturbations, and necrotic cell death. CONCLUSIONS: The findings of the present study reveal a novel signalling pathway that functionally couples NF-κB and Dox cardiomyopathy to a mechanism that is mutually dependent upon and obligatorily linked to the transcriptional control of Bnip3. Our findings further demonstrate that mitochondrial injury and necrotic cell death induced by Bnip3 is contingent upon CypD. Hence, maintaining NF-κB signalling may prove beneficial in reducing mitochondrial dysfunction and heart failure in cancer patients undergoing Dox chemotherapy.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Cardiomiopatías/inducido químicamente , Doxorrubicina/toxicidad , Mitocondrias Cardíacas/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Miocitos Cardíacos/efectos de los fármacos , FN-kappa B/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Animales , Cardiomiopatías/enzimología , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiotoxicidad , Células Cultivadas , Peptidil-Prolil Isomerasa F/genética , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , FN-kappa B/genética , Necrosis , Ratas Sprague-Dawley , Transducción de Señal
9.
Nat Cancer ; 1(3): 315-328, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32776015

RESUMEN

Doxorubicin remains an essential component of many cancer regimens, but its use is limited by lethal cardiomyopathy, which has been difficult to target, owing to pleiotropic mechanisms leading to apoptotic and necrotic cardiac cell death. Here we show that BAX is rate-limiting in doxorubicin-induced cardiomyopathy and identify a small-molecule BAX inhibitor that blocks both apoptosis and necrosis to prevent this syndrome. By allosterically inhibiting BAX conformational activation, this compound blocks BAX translocation to mitochondria, thereby abrogating both forms of cell death. When co-administered with doxorubicin, this BAX inhibitor prevents cardiomyopathy in zebrafish and mice. Notably, cardioprotection does not compromise the efficacy of doxorubicin in reducing leukemia or breast cancer burden in vivo, primarily due to increased priming of mitochondrial death mechanisms and higher BAX levels in cancer cells. This study identifies BAX as an actionable target for doxorubicin-induced cardiomyopathy and provides a prototype small-molecule therapeutic.


Asunto(s)
Cardiomiopatías , Pez Cebra , Animales , Apoptosis/fisiología , Cardiomiopatías/inducido químicamente , Doxorrubicina/efectos adversos , Ratones , Necrosis , Pez Cebra/metabolismo , Proteína X Asociada a bcl-2
10.
Cardiovasc Res ; 115(1): 179-189, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850765

RESUMEN

Aims: Myocardial ischaemia followed by reperfusion (IR) causes an oxidative burst resulting in cellular dysfunction. Little is known about the impact of oxidative stress on cardiomyocyte lipids and their role in cardiac cell death. Our goal was to identify oxidized phosphatidylcholine-containing phospholipids (OxPL) generated during IR, and to determine their impact on cell viability and myocardial infarct size. Methods and results: OxPL were quantitated in isolated rat cardiomyocytes using mass spectrophotometry following 24 h of IR. Cardiomyocyte cell death was quantitated following exogenously added OxPL and in the absence or presence of E06, a 'natural' murine monoclonal antibody that binds to the PC headgroup of OxPL. The impact of OxPL on mitochondria in cardiomyocytes was also determined using cell fractionation and Bnip expression. Transgenic Ldlr-/- mice, overexpressing a single-chain variable fragment of E06 (Ldlr-/--E06-scFv-Tg) were used to assess the effect of inactivating endogenously generated OxPL in vivo on myocardial infarct size. Following IR in vitro, isolated rat cardiomyocytes showed a significant increase in the specific OxPLs PONPC, POVPC, PAzPC, and PGPC (P < 0.05 to P < 0.001 for all). Exogenously added OxPLs resulted in significant death of rat cardiomyocytes, an effect inhibited by E06 (percent cell death with added POVPC was 22.6 ± 4.14% and with PONPC was 25.3 ± 3.4% compared to 8.0 ± 1.6% and 6.4 ± 1.0%, respectively, with the addition of E06, P < 0.05 for both). IR increased mitochondrial content of OxPL in rat cardiomyocytes and also increased expression of Bcl-2 death protein 3 (Bnip3), which was inhibited in presence of E06. Notably cardiomyocytes with Bnip3 knock-down were protected against cytotoxic effects of OxPL. In mice exposed to myocardial IR in vivo, compared to Ldlr-/- mice, Ldlr-/--E06-scFv-Tg mice had significantly smaller myocardial infarct size normalized to area at risk (72.4 ± 21.9% vs. 47.7 ± 17.6%, P = 0.023). Conclusions: OxPL are generated within cardiomyocytes during IR and have detrimental effects on cardiomyocyte viability. Inactivation of OxPL in vivo results in a reduction of infarct size.


Asunto(s)
Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfolípidos/metabolismo , Anticuerpos de Cadena Única/metabolismo , Animales , Muerte Celular , Células Cultivadas , Modelos Animales de Enfermedad , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Oxidación-Reducción , Ratas Sprague-Dawley , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transducción de Señal , Anticuerpos de Cadena Única/genética
11.
Free Radic Biol Med ; 112: 411-422, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28838842

RESUMEN

The Bcl-2 protein Bnip3 is crucial for provoking oxidative injury to mitochondria following anthracycline treatment or ischemia-reperfusion injury. Herein, we investigate the effects of the polyphenolic compound ellagic acid (EA) on Bnip3 mediated mitochondrial injury and necrotic cell death in cardiac myocytes. In contrast to vehicle treated cardiomyocytes, Bnip3 was highly enriched in mitochondrial fractions of cardiac myocytes treated with the anthracycline doxorubicin or in cells subjected to hypoxia (HPX). Mitochondrial associated Bnip3 was accompanied by mPTP opening and loss of ∆Ψm. The dynamin related fission protein Drp-1 was phosphorylated (Drp1616) and coincided with excessive mitochondrial fragmentation, mitophagy and necrosis in cardiac myocytes treated with doxorubicin or subjected to hypoxia. Moreover, knock-down of Bnip3 was sufficient to prevent mitochondrial fission and doxorubicin-induced cell death supporting the involvement of Bnip3 in doxorubicin cardiotoxity. Interestingly, mitochondrial associated Bnip3 in cells treated with doxorubicin was markedly reduced by EA. This resulted in significantly less mitochondrial fission and cell death. Notably, EA similarly suppressed mitochondrial injury and cell death induced by hypoxia or Bnip3 over-expression. Herein, we identify a novel signaling axis that operationally links EA and Bnip3 for suppression of cardiac cell death. We provide compelling new evidence that EA suppresses mitochondrial injury and necrotic cell death of cardiac myocytes by functionally abrogating Bnip3 activity. Hence, by suppressing mitochondrial injury induced by Bnip3, EA may provide a therapeutic advantage in reducing oxidative injury and cardiac dysfunction in cancer patients undergoing anthracycline treatment or individuals with ischemic cardiac stress.


Asunto(s)
Ácido Elágico/farmacología , Proteínas de la Membrana/genética , Mitocondrias Cardíacas/efectos de los fármacos , Proteínas Mitocondriales/genética , Miocitos Cardíacos/efectos de los fármacos , Necrosis/genética , Animales , Animales Recién Nacidos , Antibióticos Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Doxorrubicina/antagonistas & inhibidores , Doxorrubicina/toxicidad , Dinaminas/genética , Dinaminas/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Necrosis/metabolismo , Necrosis/patología , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley
12.
J Cell Biol ; 210(7): 1101-15, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26416963

RESUMEN

Herein we describe a novel survival pathway that operationally links alternative pre-mRNA splicing of the hypoxia-inducible death protein Bcl-2 19-kD interacting protein 3 (Bnip3) to the unique glycolytic phenotype in cancer cells. While a full-length Bnip3 protein (Bnip3FL) encoded by exons 1-6 was expressed as an isoform in normal cells and promoted cell death, a truncated spliced variant of Bnip3 mRNA deleted for exon 3 (Bnip3Δex3) was preferentially expressed in several human adenocarcinomas and promoted survival. Reciprocal inhibition of the Bnip3Δex3/Bnip3FL isoform ratio by inhibiting pyruvate dehydrogenase kinase isoform 2 (PDK2) in Panc-1 cells rapidly induced mitochondrial perturbations and cell death. The findings of the present study reveal a novel survival pathway that functionally couples the unique glycolytic phenotype in cancer cells to hypoxia resistance via a PDK2-dependent mechanism that switches Bnip3 from cell death to survival. Discovery of the survival Bnip3Δex3 isoform may fundamentally explain how certain cells resist Bnip3 and avert death during hypoxia.


Asunto(s)
Empalme Alternativo/fisiología , Exones/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Muerte Celular/fisiología , Hipoxia de la Célula/fisiología , Supervivencia Celular/fisiología , Humanos , Células MCF-7 , Proteínas de la Membrana/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora
13.
Hypertension ; 62(1): 70-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23648705

RESUMEN

Myocardial ischemia and angiotensin II activate the tumor suppressor p53 protein, which promotes cell death. Previously, we showed that the Bcl-2 death gene Bnip3 is highly induced during ischemia, where it triggers mitochondrial perturbations resulting in autophagy and cell death. However, whether p53 regulates Bnip3 and autophagy is unknown. Herein, we provide new compelling evidence for a novel signaling axis that commonly links p53 and Bnip3 for autophagy and cell death. p53 overexpression increased endogenous Bnip3 mRNA and protein levels resulting in mitochondrial defects leading to loss of mitochondrial ΔΨ(m). This was accompanied by an increase in autophagic flux and cell death. Notably, genetic loss of function studies, such as Atg7 knock-down or pharmacological inhibition of autophagy with 3-methyl adenine, suppressed cell death induced by p53--indicating that p53 induces maladaptive autophagy. Our previous work demonstrated that Bnip3 induces mitochondrial defects and autophagic cell death. Conversely, loss of function of Bnip3 in cardiac myocytes or Bnip3(-/-) mouse embryonic fibroblasts prevented mitochondrial targeting of p53, autophagy, and cell death. To our knowledge, these data provide the first evidence for the dual regulation of autophagy and cell death of cardiac myocytes by p53 that is mutually dependent on and obligatorily linked to Bnip3 gene activation. Hence, our findings may explain more fundamentally, how, autophagy and cell death are dually regulated during cardiac stress conditions where p53 is activated.


Asunto(s)
Animales Recién Nacidos , Autofagia/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/genética , Miocitos Cardíacos/patología , Proteínas Proto-Oncogénicas/genética , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Animales , Autofagia/fisiología , Western Blotting , Hipoxia de la Célula/genética , Células Cultivadas , Modelos Animales de Enfermedad , Potencial de la Membrana Mitocondrial/genética , Proteínas de la Membrana/biosíntesis , Ratones , Microscopía Fluorescente , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Proteína p53 Supresora de Tumor/biosíntesis
14.
Circ Heart Fail ; 6(2): 335-43, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23395931

RESUMEN

BACKGROUND: Tumor necrosis factor-α and other proinflammatory cytokines activate the canonical nuclear factor (NF)-κB pathway through the kinase IKKß. Previously, we established that IKKß is also critical for Akt-mediated NF-κB activation in ventricular myocytes. Akt activates the kinase mammalian target of rapamycin (mTOR), which mediates important processes such as cardiac hypertrophy. However, whether mTOR regulates cardiac myocyte cell survival is unknown. METHODS AND RESULTS: Herein, we demonstrate bidirectional regulation between NF-κB signaling and mTOR, the balance which determines ventricular myocyte survival. Overexpression of IKKß resulted in mTOR activation and conversely overexpression of mTOR lead to NF-κB activation. Loss of function approaches demonstrated that endogenous levels of IKKß and mTOR also signal through this pathway. NF-κB activation by mTOR was mediated by phosphorylation of the NF-κB p65 subunit increasing p65 nuclear translocation and activation of gene transcription. This circuit was also important for NF-κB activation by the canonical tumor necrosis factor-α pathway. Our previous work has shown that NF-κB signaling suppresses transcription of the death gene Bnip3 resulting in ventricular myocyte survival. Inhibition of mTOR with rapamycin decreased NF-κB activation resulting in increased Bnip3 expression and cell death. Conversely, mTOR overexpression suppressed Bnip3 levels and cell death of ventricular myocytes in response to hypoxia. CONCLUSIONS: To our knowledge, these data provide the first evidence for a bidirectional link between NF-κB signaling and mTOR that is critical in the regulation of Bnip3 expression and cardiac myocyte death. Hence, modulation of this axis may be cardioprotective during ischemia.


Asunto(s)
Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/enzimología , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Animales Recién Nacidos , Hipoxia de la Célula , Supervivencia Celular , Células Cultivadas , Activación Enzimática , Regulación de la Expresión Génica , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , FN-kappa B/genética , Fosforilación , Regiones Promotoras Genéticas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Factor de Transcripción ReIA/metabolismo , Transcripción Genética , Transfección , Factor de Necrosis Tumoral alfa/metabolismo
15.
Stem Cell Rev Rep ; 6(2): 248-59, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20431964

RESUMEN

Alongside their contribution to research, human embryonic stem cells (hESC) may also prove valuable for cell-based therapies. Traditionally, these cells have been grown in adhesion culture either with or without feeder cells, allowing for their continuous growth as undifferentiated cells. However, to be applicable in therapy and industry they must be produced in a scalable and controlled process. Here we present for the first time a suspension culture system for undifferentiated hESC and induced pluripotent stem cells (iPSC), based on medium supplemented with the IL6RIL6 chimera (interleukin-6 receptor fused to interleukin-6), and basic fibroblast growth factor. Four hESC lines cultured in this system maintained all ESC features after 20 passages, including stable karyotype and pluripotency. Similar results were obtained when hESC were replaced with iPSC from two different cell lines. We demonstrate that the IL6RIL6 chimera supports the self-renewal and expansion of undifferentiated hESC and iPSC in suspension, and thus present another efficient system for large-scale propagation of undifferentiated pluripotent cells for clinical and translational applications.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Apoptosis/efectos de los fármacos , Western Blotting , Diferenciación Celular/fisiología , Citometría de Flujo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Cariotipificación , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA