RESUMEN
Background: Food allergies have become more common in the last decade. Shrimp is one of the most dominant food allergy triggers in Asian countries, including Indonesia. After ingesting allergens, B cells will produce allergen-specific Immunoglobin E (IgE). In the sensitization period, repeated allergen exposure promotes Mast Cell (MC) degranulation in intestinal tissue and releases several inflammatory mediators, thereby causing hypersensitivity reactions. Shrimp Allergen Extract (SAE) is an immunotherapy and diagnostic agent currently being developed in Indonesia. In this study, we investigated the effect of SAE administration on eliciting an MC immunological response. Methods: Mice were divided into a non-sensitized and sensitized group. The non-sensitized group only received 1 mg of alum (i.p), whereas the sensitized group received 1 mg of alum and 100 µg of SAE on days 0, 7, and 14. Then, both groups were challenged with 400 µg SAE (p.o) on days 21, 22, and 23 following systemic allergic symptom observation. Results: We showed that SAE was able to increase systemic allergic symptoms significantly in the sensitized mice through repeated challenge (1.33±0.21; 1.83±0.17; and 2.00±0.00), compared to non-sensitized mice (0.17±0.17). Moreover, histopathological analysis showed that the SAE administration causes an increase of MC degranulation in the ileum tissue of the sensitized mice (44.43%±0.01), compared to non-sensitized mice (35.45%±0.01). Conclusions: This study found that SAE could induce allergic reactions in mice by influencing critical effector cells, MCs.
RESUMEN
Osteoblasts, cells derived from mesenchymal stem cells (MSCs) in the bone marrow, are cells responsible for bone formation and remodeling. The differentiation of osteoblasts from MSCs is triggered by the expression of specific genes, which are subsequently controlled by pro-osteogenic pathways. Mature osteoblasts then differentiate into osteocytes and are embedded in the bone matrix. Dysregulation of osteoblast function can cause inadequate bone formation, which leads to the development of bone disease. Various key molecules are involved in the regulation of osteoblastogenesis, which are transcription factors. Previous studies have heavily examined the role of factors that control gene expression during osteoblastogenesis, both in vitro and in vivo. However, the systematic relationship of these transcription factors remains unknown. The involvement of ncRNAs in this mechanism, particularly miRNAs, lncRNAs, and circRNAs, has been shown to influence transcriptional factor activity in the regulation of osteoblast differentiation. Here, we discuss nine essential transcription factors involved in osteoblast differentiation, including Runx2, Osx, Dlx5, ß-catenin, ATF4, Ihh, Satb2, and Shn3. In addition, we summarize the role of ncRNAs and their relationship to these essential transcription factors in order to improve our understanding of the transcriptional regulation of osteoblast differentiation. Adequate exploration and understanding of the molecular mechanisms of osteoblastogenesis can be a critical strategy in the development of therapies for bone-related diseases.Communicated by Ramaswamy H. Sarma.
Asunto(s)
Osteoblastos , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Osteoblastos/metabolismo , Regulación de la Expresión Génica , Osteogénesis/genéticaRESUMEN
Background: Allergy is a hypersensitivity reaction that is generally mediated by Immunoglobulin E (IgE). More than 25% of the world's population is suspected of having these various diseases, and the prevalence and progression of these diseases have continued to increase significantly in recent years. Among these allergyrelated diseases, allergic rhinitis and food allergy are the types of allergies with the highest prevalence. Clinical manifestations of allergic rhinitis include sneezing, rhinorrhea, nasal itching, and nasal congestion. Objective: This study aimed to determine the behavioral changes of allergic rhinitis after Indonesian House Dust Mites (IHDM) allergenic extract administration as an immunotherapy. Methods: Eight male BALB/c mice aged 6-8 weeks in each group were treated for seven groups. The sensitization phase is given intraperitoneal, the desensitization phase is given by subcutaneous, and the challenge phase is given intranasal. The allergic parameters were observed, such as nose rubbing and sneezing. The parameters were observed for 15 minutes after the challenge administration. Results: The results showed that the administration of Indonesian House Dust Mites as immunotherapy decreased the frequency of nose rubbing and sneezing after the administration of immunotherapy compared to the allergic rhinitis model. Conclusions: The administration of the Indonesian House Dust Mites as immunotherapy decreased the allergic rhinitis immune response by altering the behavioral parameter.
RESUMEN
OBJECTIVES: Phyllanthus niruri has been known as an immunomodulator and also reported to possess an antiviral activity against several RNA viruses, such as hepatitis B virus and hepatitis C virus by inhibiting viral entry and replication. Since the current situation of Coronavirus Disease 2019 (COVID-19) which infected among the world and caused severe disease and high morbidity, it urgently needed to find new agents against COVID-19. Therefore, in silico screening against COVID-19 receptors is carried out as an initial stage of drug discovery by evaluating the activity of phyllanthin and hypophyllanthin, an isolated from Phyllanthus niruri, in inhibiting spike glycoprotein (6LZG) and main protease (5R7Y) which play as target receptors of COVID-19. METHODS: Molegro Virtual Docker 6.0 used to determine the best binding energy through the rerank score which shows the total energy bonds calculation. RESULTS: Phyllanthin and hypophyllanthin demonstrated to possess greater binding affinity toward the COVID-19 inhibition sites than their native ligand. The rerank score of phyllanthin and hypophyllanthin are lower than the native ligands 6LZG and 5R7Y. This result indicated that phyllanthin and hypophyllanthin have a stronger interaction than the native ligands both in spike glycoprotein (entry inhibitor) and main protease (translation and replication inhibitor). CONCLUSIONS: In conclusion, phyllanthin and hypophyllanthin are predicted to have strong activity against COVID-19 through inhibiting spike glycoprotein and main protease under in silico study. Further research is needed to support the development of P. niruri as inhibitor agents of COVID-19 through bioassay studies.