Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proteomics ; 18(19): e1800091, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30095222

RESUMEN

The transcriptome of the ecotoxicological model Enchytraeus crypticus (known as potworm) is well studied, but the downstream changes at the protein level remained a gap. Changes in the protein regulation following exposure to CuO nanomaterial (NM) and Cu salt (CuCl2 ) are investigated. HPLC-MS/MS using tandem mass tags is used. CuO NM elicits higher number of differentially expressed proteins (DEPs) compared to CuCl2 with little to no overlap of proteins. CuO NM causes more stress response mechanisms, with good agreement between DEPs, genes, and metabolites. CuCl2 causes higher impact in shorter time periods, but organisms have conserved mechanisms (constitutive genes) that allow Cu handling and detoxification. CuO NM causes higher impact after a longer exposure period, inducing regulation of facultative genes with a whole differentiated paradigm and cascade. This could be due to different issues: 1) the cell uptake route is different for Cu NM and Cu ions, 2) internalized Cu NM can result in a "Trojan-horse" effect, 3) the cascade of events occurs in a different time order, and 4) the organism uptake is different between life stages, i.e., cocoons thickened surface protects the entry of NM and juveniles have facilitated entry via tegument. The data have been deposited to the ProteomeXchange with identifier PXD010647.


Asunto(s)
Cobre/farmacología , Nanoestructuras/administración & dosificación , Oligoquetos/metabolismo , Proteoma/análisis , Oligoelementos/farmacología , Animales , Oligoquetos/efectos de los fármacos , Oligoquetos/crecimiento & desarrollo , Proteoma/efectos de los fármacos
2.
Environ Sci Technol ; 52(19): 11394-11401, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30193070

RESUMEN

Tungsten carbide cobalt (WCCo) nanoparticles (NPs) are widely used in hard metal industries. Pulmonary diseases and risk of cancer are associated with occupational exposure, but knowledge about the environmental fate and effects is virtually absent. In this study, the fate and effects of crystalline WCCo NPs, WC, and Co2+ were assessed in the soil model Enchytraeus crypticus, following the standard Enchytraeid Reproduction Test (ERT). An additional 28 day exposure period compared to the ERT (i.e., a total of 56 days) was performed to assess longer-term effects. WCCo NPs affected reproduction at a concentration higher than the corresponding Co based (EC50 = 1500 mg WCCo/kg, equivalent to 128 mg Co/kg). WC showed no negative effect up to 1000 mg W/kg. Maximum uptake of Co was 10-fold higher for CoCl2 compared to WCCo exposed organisms. Overall toxicity seems to be due to a combined effect between WC and Co. This is supported by the soil bioavailable fraction and biological tissue measurements. Last, results highlight the need to consider longer exposure period of NPs for comparable methods standardized for conventional chemicals.


Asunto(s)
Nanopartículas , Oligoquetos , Compuestos de Tungsteno , Animales , Cobalto , Suelo
3.
Environ Res ; 133: 164-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24949815

RESUMEN

Folsomia candida (Collembola) is a standard soil ecotoxicological species; effect assessment includes survival and reproduction as endpoints. In the present study, and for the first time, a range of oxidative stress biomarkers measurement was optimized and validated. The antioxidant capacity was measured by the activities of catalase (CAT), glutathione reductase (GR), glutathione-s-transferase (GST) and content of total glutathione (TG). The oxidative damage in the lipid membranes was estimated by lipid peroxidation (LPO) and metallothionein (MT) levels. The exposure included the essential and non-essential metals Cu and Cd, in LUFA 2.2 natural standard soil, using a series of sampling times along a 10 days period (0, 2, 4, 6 and 10 days). Exposure concentrations were selected based on their reproduction EC50 values, 60 and 1000 mg/kg soil DW, for Cd and Cu respectively. The protocols were optimized and results show that oxidative stress biomarkers can be successfully used in F. candida, this being highly relevant as complementary information to the mechanistic level. The selected sampling times gave a good indication of the markers dynamic and can be reduced/adapted in future testing. Results showed that both metals caused an increase in the MT levels after 6 days but Cd acted as a stronger oxidant agent compared to Cu, i.e. causing higher damage. In sum, Cd mobilized/activated more antioxidant enzymes, but the increased activities were not enough to prevent LPO. This study confirms that the oxidative stress caused by Cd is higher despite the use of same reproduction EC50 indicating that toxicity seems more reversible for Cu than for Cd. Among others, GST and MT would be a good selection of biomarkers for Cd effect.


Asunto(s)
Artrópodos/efectos de los fármacos , Biomarcadores/metabolismo , Cadmio/toxicidad , Cobre/toxicidad , Monitoreo del Ambiente/normas , Metalotioneína/metabolismo , Metalotioneína/toxicidad , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Artrópodos/metabolismo , Cadmio/metabolismo , Cobre/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
4.
J Clin Nurs ; 23(15-16): 2101-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25040761

RESUMEN

AIMS AND OBJECTIVES: To identify the main nursing diagnosis and to analyse and select the appropriate outcomes and interventions for postinfarction patients. BACKGROUND: After a cardiac event, few patients resume their sexual life with the same intensity and frequency they used to have, and some patients do not even do it. Doubtful and insecure reactions are observed in both patients/partners and health professionals. These behaviours are frequently taboos and preconceptions about sexuality which are still taken as real among us. DESIGN: Exploratory study. METHODS: Integrative literature review with online search on the Virtual Health Library (BVS) and websites. The most relevant diagnosis in the general literature was compared with International Classification for Nursing Practice and North-American International Nursing Diagnosis Association. The outcomes were selected from Nursing Outcome Classification, and the interventions and activities were based on the general literature and Nursing Intervention Classification. RESULTS: Sexual dysfunction was the most relevant diagnosis described in the general literature. The characteristics and related factors were specified in patient's/their partner's verbalisation of the physical difficulties in having sexual activity and in their social and emotional reactions to the disease and to the prescribed medicine. The selected priority results were sexuality and knowledge on sexuality. The counselling intervention was chosen as the most appropriate. CONCLUSION: It was possible to get to the wide understanding of the sexual dysfunction as a nursing diagnosis expressed in the daily routine of the care to the postinfarction patient. Its identification requires knowledge and abilities to acknowledge its characteristics and related factors, which served as support for selection of outcomes, interventions and nursing activities. RELEVANCE TO CLINICAL PRACTICE: Association between diagnosis, outcomes, interventions and nursing activities established for the postinfarction patient is strategic so as to guide the nurses who operate in the cardiovascular area and may contribute towards refinement of the nursing classifications.


Asunto(s)
Infarto del Miocardio/rehabilitación , Diagnóstico de Enfermería , Disfunciones Sexuales Fisiológicas/diagnóstico , Humanos , Infarto del Miocardio/enfermería , Disfunciones Sexuales Fisiológicas/enfermería
5.
Nanomaterials (Basel) ; 14(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38392699

RESUMEN

In the fast-evolving landscape of nanotechnology, the widespread applications of engineered nanomaterials (ENMs) have undoubtedly revolutionized various industries, ranging from healthcare and electronics to agriculture and environmental remediation [...].

6.
Environ Toxicol Pharmacol ; 106: 104372, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244879

RESUMEN

Interaction of nanoplastics (NPls) with other environmental contaminants could affect their uptake by the organisms and their toxicity. Thus, the present study aims to investigate the polystyrene NPls (44 nm) interaction with the antidepressant amitriptyline (AMI) and its toxicity to Danio rerio embryos. A similar toxicological profile for NPls + AMI exposure was found for most of the evaluated endpoints, comparing with AMI single exposure, showing that the presence of NPls did not modulate the AMI toxicity. However, the behavioral assessment showed a different pattern with hypoactivity for the NPls + AMI exposure (NPls - hyperactivity; AMI - no effect). Interaction effects between NPls and AMI were also found in the protein contents (antagonism) and in the total glutathione content (synergism). This study highlights the complexity and unpredictability of NPls interaction with pharmaceuticals, important for an accurate environmental risk assessment and for the developing of effective strategies and interventions against plastic pollution.


Asunto(s)
Amitriptilina , Contaminantes Químicos del Agua , Animales , Amitriptilina/toxicidad , Pez Cebra/metabolismo , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Poliestirenos/toxicidad
7.
Nanotoxicology ; 18(3): 299-313, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38807536

RESUMEN

The detrimental impacts of plastic nanoparticles (PNPs) are a worldwide concern, although knowledge is still limited, in particular for soil mesofauna. This study investigates the biochemical impact of 44 nm polystyrene PNPs on three soil models-Enchytraeus crypticus (Oligochaeta), Folsomia candida (Collembola) and Porcellionides pruinosus (Isopoda). Exposure durations of 3, 7 and 14 days (d) were implemented at two concentrations (1.5 and 300 mg kg-1 PNPs). Results revealed PNPs impact on the activities of the glutathione-dependent antioxidative enzyme, glutathione S-transferase (GST) and on the neurotransmitter acetylcholinesterase (AChE) for all three species. Catalase (CAT) played a minor role, primarily evident in F. candida at 300 mg kg-1 PNPs (CAT and GST response after 14 d), with no lipid peroxidation (LPO) increase. Even with the antioxidant defence, P. pruinosus was the most sensitive species for lipid oxidative damage (LPO levels increased after 7 d exposure to 300 mg kg-1 PNPs). Significant AChE inhibitions were measured already after 3 d to both PNP concentrations in F. candida and E. crypticus, respectively. Significant AChE inhibitions were also found in P. pruinosus but later (7 d). Overall, the toxicity mechanisms of PNPs involved antioxidant imbalance, being (mostly) the glutathione-associated metabolism part of that defence system. Neurotoxicity, linked to AChE activities, was evident across all species. Sensitivity to PNPs varied: P. pruinosus > F. candida ≅ E. crypticus. This pioneering study on PNPs toxicity in soil invertebrates underscores its environmental relevance, shedding light on altered biochemical responses, that may compromise ecological roles and soil ecosystem fitness.


Asunto(s)
Acetilcolinesterasa , Antioxidantes , Glutatión Transferasa , Nanopartículas , Oligoquetos , Animales , Nanopartículas/toxicidad , Nanopartículas/química , Antioxidantes/metabolismo , Acetilcolinesterasa/metabolismo , Oligoquetos/efectos de los fármacos , Glutatión Transferasa/metabolismo , Artrópodos/efectos de los fármacos , Isópodos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Plásticos/toxicidad , Plásticos/química , Poliestirenos/toxicidad , Poliestirenos/química , Catalasa/metabolismo
8.
Toxics ; 11(10)2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37888726

RESUMEN

Despite the growing concern over nanoplastics' (NPls) environmental impacts, their long-term effects on terrestrial organisms remain poorly understood. The main aim of this study was to assess how NPls exposure impacts both the parental (F1) and subsequent generations (F2 and F3) of the soil-dwelling species Folsomia candida. After a standard exposure (28 days), we conducted a multigenerational study along three generations (84 days), applying polystyrene nanoparticles (PS NPs; diameter of 44 nm) as representatives of NPls. Endpoints from biochemical to individual levels were assessed. The standard test: PS NPs (0.015 to 900 mg/kg) had no effect in F. candida survival or reproduction. The multigenerational test: PS NPs (1.5 and 300 mg/kg) induced no effects on F. candida survival and reproduction along the three generations (F1 to F3). PS NPs induced no effects in catalase, glutathione reductase, glutathione S-transferases, and acetylcholinesterase activities for the juveniles of the F1 to F3. Oxidative damage through lipid peroxidation was detected in the offspring of F1 but not in the juveniles of F2 and F3. Our findings underscore the importance of evaluating multigenerational effects to gain comprehensive insights into the contaminants long-term impact, particularly when organisms are continuously exposed, as is the case with NPls.

9.
NanoImpact ; 30: 100456, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841353

RESUMEN

Nanoplastics (NPLs) became ubiquitous in the environment, from the air we breathe to the food we eat. One of the main concerns about the NPLs risks is their role as carrier of other environmental contaminants, potentially increasing their uptake, bioaccumulation and toxicity to the organisms. Therefore, the main aim of this study was to understand how the presence of polystyrene NPLs (∅ 44 nm) will influence the toxicity (synergism, additivity or antagonism) of the antihistamine diphenhydramine (DPH), towards zebrafish (Danio rerio) embryos, when in dual mixtures. After 96 hours (h) exposure, at the organismal level, NPLs (0.015 or 1.5 mg/L) + DPH (10 mg/L) induced embryo mortality (90%) and malformations (100%) and decreased hatching (80%) and heartbeat rates (60%). After 120 h exposure, NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L) decreased larvae swimming distance (30-40%). At the biochemical level, increased glutathione S-transferases (55-122%) and cholinesterase (182-343%) activities were found after 96 h exposure to NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L). However, catalase (CAT) activity remained similar to the control group in the mixtures, inhibiting the effects detected after the exposure to 1.5 mg/L NPLs alone (increased 230% of CAT activity). In general, the effects of dual combination - NPLs + DPH (even at concentrations as low as 10 µg/L of DPH) - were more harmful than the correspondent individual exposures, showing the synergistic interactions of the dual mixture and answering to the main question of this work. The obtained results, namely the altered toxicity patterns of NPLs + DPH compared with the individual exposures, show the importance of an environmental risk assessment considering NPLs as a co-contaminant due to the potential NPLs role as vector for other contaminants.


Asunto(s)
Difenhidramina , Pez Cebra , Animales , Difenhidramina/toxicidad , Microplásticos/toxicidad , Antagonistas de los Receptores Histamínicos , Preparaciones Farmacéuticas
10.
Environ Toxicol Pharmacol ; 103: 104258, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37666394

RESUMEN

In aquatic environments, nanoplastics (NPls) can adsorb pharmaceuticals. However, throughout the scientific community, there is scarce knowledge about the interactive effects of the mixture nanoplastics (NPls) with pharmaceuticals to aquatic organisms. Therefore, this study aimed to investigate if the pharmaceutical diphenhydramine (DPH) toxicological effects alters when in presence of polystyrene NPls (PSNPls). To achieve this, Daphnia magna immobilization and different biochemical biomarkers (48-hours exposure) were assessed. Synergistic interactions occurred at environmentally relevant concentrations, PSNPls+DPH induced oxidative damage, whereas no effect was observed at single exposures. With the increase of PSNPls concentration, the DPH concentration causing 50% of effect (EC50) for organisms' immobilization decreased to 0.001 mg/L. In silico analysis suggested that the DPH toxicity to D. magna occurs via the sodium-dependent serotonin transporter. The results showed interactive effects between PSNPls and DPH (implying harmful effects on D. magna), allowing more thoughtful decisions by society and policymakers regarding plastics and pharmaceuticals.

11.
NanoImpact ; 29: 100450, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36610661

RESUMEN

The terrestrial environment is one of the main recipients of plastic waste. However, limited research has been performed on soil contamination by plastics and even less assessing the effects of nanoplastics (NPls). Behind the potential toxicity caused per se, NPls are recognized vectors of other environmental harmful contaminants. Therefore, the main aim of the present study is to understand whether the toxicity of an industrial chemical (bisphenol A - BPA) and a pharmaceutical (diphenhydramine - DPH) changes in the presence of polystyrene NPls to the terrestrial invertebrate Folsomia candida. Assessed endpoints encompassed organismal (reproduction, survival and behavior) and biochemical (neurotransmission and oxidative stress) levels. BPA or DPH, 28 d single exposures (1 to 2000 mg/kg), induce no effect on organisms' survival. In terms of reproduction, the calculated EC50 (concentration that causes 50% of the effect) and determined LOEC (lowest observed effect concentration) were higher than the environmental concentrations, showing that BPA or DPH single exposure may pose no threat to the terrestrial invertebrates. Survival and reproduction effects of BPA or DPH were independent on the presence of NPls. However, for avoidance behavior (48 h exposure), the effects of the tested mixtures (BPA + NPls and DPH + NPls) were dependent on the NPls concentration (at 0.015 mg/kg - interaction: no avoidance; at 600 mg/kg - no interaction: avoidance). Glutathione S-transferase activity increased after 28 d exposure to 100 mg/kg DPH + 0.015 mg/kg NPls (synergism). The increase of lipid peroxidation levels found after the exposure to 0.015 mg/kg NPls (a predicted environmental concentration) was not detected in the mixtures (antagonism). The results showed that the effects of the binary mixtures were dependent on the assessed endpoint and the tested concentrations. The findings of the present study show the ability of NPls to alter the effects of compounds with different natures and mechanisms of toxicity towards soil organisms, showing the importance of environmental risk assessment considering mixtures of contaminants.


Asunto(s)
Artrópodos , Difenhidramina , Animales , Difenhidramina/farmacología , Microplásticos/farmacología , Suelo , Invertebrados
12.
Nanomaterials (Basel) ; 13(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38133059

RESUMEN

The increasing use of molybdenum disulfide (MoS2) nanoparticles (NPs) raises concerns regarding their accumulation in soil ecosystems, with limited studies on their impact on soil organisms. Study aim: To unravel the effects of MoS2 nanosheets (two-dimensional (2D) MoS2 NPs) and bulk MoS2 (156, 313, 625, 1250, 2500 mg/kg) on Enchytraeus crypticus and Folsomia candida. The organisms' survival and avoidance behavior remained unaffected by both forms, while reproduction and DNA integrity were impacted. For E. crypticus, the individual endpoint reproduction was more sensitive, increasing at lower concentrations of bulk MoS2 and decreasing at higher ones and at 625 mg/kg of 2D MoS2 NPs. For F. candida, the molecular endpoint DNA integrity was more impacted: 2500 mg/kg of bulk MoS2 induced DNA damage after 2 days, with all concentrations inducing damage by day 7. 2D MoS2 NPs induced DNA damage at 156 and 2500 mg/kg after 2 days, and at 1250 and 2500 mg/kg after 7 days. Despite affecting the same endpoints, bulk MoS2 induced more effects than 2D MoS2 NPs. Indeed, 2D MoS2 NPs only inhibited E. crypticus reproduction at 625 mg/kg and induced fewer (F. candida) or no effects (E. crypticus) on DNA integrity. This study highlights the different responses of terrestrial organisms to 2D MoS2 NPs versus bulk MoS2, reinforcing the importance of risk assessment when considering both forms.

13.
Nanomaterials (Basel) ; 12(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35564187

RESUMEN

The increased use and production of new materials has contributed to Anthropocene biodiversity decrease. Therefore, a careful and effective toxicity evaluation of these new materials is crucial. However, environmental risk assessment is facing new challenges due to the specific characteristics of nanomaterials (NMs). Most of the available ecotoxicity studies target the aquatic ecosystems and single exposures of NMs. The present study evaluated Enchytraeus crypticus survival and reproduction (28 days) and biochemical responses (14 days) when exposed to nanoparticles of vanadium (VNPs) and boron (BNPs) (single and mixture; tested concentrations: 10 and 50 mg/kg). Although at the organism level the combined exposures (VNPs + BNPs) did not induce a different toxicity from the single exposures, the biochemical analysis revealed a more complex picture. VNPs presented a higher toxicity than BNPs. VNPs (50 mg/kg), independently of the presence of BNPs (additive or independent effects), caused a decrease in survival and reproduction. However, acetylcholinesterase, glutathione S-transferase, catalase, glutathione reductase activities, and lipid peroxidation levels revealed alterations in neurotoxicity, detoxification and antioxidant responses, depending on the time and type of exposure (single or mixture). The results from this study highlight different responses of the organisms to contaminants in single versus mixture exposures, mainly at the biochemical level.

14.
Toxics ; 10(4)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35448454

RESUMEN

Plastics in all shapes and sizes have become widespread across ecosystems due to intense anthropogenic use. As such, they can interact with other contaminants that accumulate in the terrestrial environment, such as pharmaceuticals, metals or nanomaterials (NMs). These interactions can potentiate combined toxic effects in the exposed soil organisms, with hazardous long-term consequences to the full ecosystem. In the present study, a terrestrial model species, Enchytraeus crypticus (oligochaeta), was exposed through contaminated soil with nanopolystyrene (representative of nanoplastics (NPls)), alone and in combination with diphenhydramine (DPH, representative of pharmaceuticals), silver nitrate (AgNO3, representative of metals) and vanadium nanoparticles (VNPs, representative of NMs). AgNO3 and VNPs decreased E. crypticus reproduction at 50 mg/kg, regardless of the presence of NPls. Moreover, at the same concentration, both single and combined VNP exposures decreased the E. crypticus survival. On the other hand, DPH and NPls individually caused no effect on organisms' survival and reproduction. However, the combination of DPH (10 and 50 mg/kg) with 300 mg NPls/kg induced a decrease in reproduction, showing a relevant interaction between the two contaminants (synergism). Our findings indicate that the NPls can play a role as vectors for other contaminants and can potentiate the effects of pharmaceuticals, such as DPH, even at low and sub-lethal concentrations, highlighting the negative impact of mixtures of contaminants (including NPls) on soil systems.

15.
Environ Pollut ; 303: 119166, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35306087

RESUMEN

Once in the aquatic ecosystems, nanoplastics (NPls) can interact with other contaminants acting as vectors of transport and altering their toxicological effects towards organisms. Thus, the present study aims to investigate how polystyrene NPls (44 nm) interact with the herbicide phenmedipham (PHE) and affect its toxicity to zebrafish embryos. Single exposures to 0, 0.015, 0.15, 1.5, 15 and 150 mg/L NPls and 0.02, 0.2, 2 and 20 mg/L PHE were performed. Embryos were also exposed to the binominal combinations: 0.015 mg/L NPls + 2 mg/L PHE, 0.015 mg/L NPls + 20 mg/L PHE, 1.5 mg/L NPls + 2 mg/L PHE and 1.5 mg/L NPls + 20 mg/L PHE. Due to the low solubility of PHE in water, a solvent control was performed (0.01% acetone). PHE was quantified. Mortality, heartbeat and hatching rate, malformations appearance, locomotor behavior and biomarkers related to oxidative stress, neurotransmission and energy budgets were analyzed. During 96 h, NPls and PHE single and combined exposures did not affect embryos development. After 120 h, NPls induced hyperactivity and PHE induced hypoactivity. After 96 h, NPls increased catalase activity and PHE increased glutathione S-transferases activity. On the combination 0.015 mg/L NPls + 20 mg/L PHE, hyperactivity behavior was found, similar to 0.015 mg/L NPls, and cholinesterase activity was inhibited. Additionally, the combination 1.5 mg/L NPls + 20 mg/L PHE increased both catalase and glutathione S-transferases activities. The combination NPls with PHE affected more biochemical endpoints than the single exposures, showing the higher effect of the binominal combinations. Dissimilar interactions effects - no interaction, synergism and antagonism - between NPls and PHE were found. The current study shows that the effects of NPls on bioavailability and toxicity of other contaminants (e.g. PHE) cannot be ignored during the assessment of NPls environmental behavior and risks.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Animales , Carbamatos , Catalasa , Ecosistema , Embrión no Mamífero , Glutatión , Herbicidas/toxicidad , Microplásticos , Transferasas/farmacología , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
16.
Environ Int ; 164: 107263, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35504231

RESUMEN

The main aim of the study is to evaluate the effects of the pharmaceutical diphenhydramine (DPH) on embryo-larvae Danio rerio across distinct levels of organization - individual and subcellular - and correlate those effects with the DPH mode of action (MoA) assessed by in silico analysis. An embryos heartbeat rate reduction was observed at 10 mg/L DPH, but 0.001 to 10 mg/L did not significantly affect the zebrafish survival, hatching and morphology. Larvae swimming distance decreased (hypoactivity) at 1 and 10 mg/L DPH. Moreover, the straightforward movements decrease and the increase in the zigzag movements or movements with direction changes, shown an erratic swimming behavior. Energy budgets decreased for lipid (0.01 mg/L DPH) and carbohydrate (10 mg/L DPH) contents. Cholinesterase (neural function) and glutathione S-transferase (Phase II biotransformation/antioxidant processes) increased their activities at 10 mg/L DPH, where a decrease in the total glutathione content (antioxidant system) was observed. DNA damage was found at 0.01 and 10 mg/L DPH. However, a DNA repair occurred after subsequent 72 h in clean media. The in silico study revealed a relevant conservation between human and zebrafish DPH target molecules. These data provide a valuable ecotoxicological information about the DPH effects and MoA to non-target organisms.


Asunto(s)
Difenhidramina , Contaminantes Químicos del Agua , Pez Cebra , Animales , Antioxidantes , Difenhidramina/toxicidad , Embrión no Mamífero , Humanos , Larva , Contaminantes Químicos del Agua/toxicidad
17.
Nanomaterials (Basel) ; 11(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34443769

RESUMEN

From the start of the 21st century, nanoecotoxicological research has been growing in fast steps due to the need to evaluate the safety of the increasing use of engineered nanomaterials. Boron (B) and vanadium (V) nanoparticles (NPs) generated by anthropogenic activities are subsequently released in the environment; therefore, organisms can be continuously exposed to these NPs for short or long periods. However, the short and long-term effects of BNPs and VNPs on soil organisms are unknown. This work aimed to recognize and describe their potential toxicological effects on the model species Enchytraeus crypticus, assessing survival and reproduction, through a longer-term exposure (56 days (d)-OECD test extension of 28 d), and avoidance behavior, through a short-term exposure (48 hours (h)). After 28 d, BNPs did not induce a significant effect on E. crypticus survival, whereas they decreased the organisms' reproduction at 500 mg/kg. From 10 to 500 mg/kg, VNPs decreased the E. crypticus survival and/or reproduction. After 56 d, 100 to 500 mg/kg BNPs and 50 to 500 mg/kg VNPs, decreased the reproduction output of E. crypticus. The estimated Effect Concentrations (ECx) based on reproduction, for BNPs, were lower at 56 d compared with 28 d; for VNPs, an opposite pattern was found: ECx 28 d < ECx 56 d. BNPs did not induce an avoidance behavior, but organisms avoided the soil contaminated with 10 mg VNPs/kg. The tested NPs showed different E. crypticus apical effects at 28 d from the ones detected at 56 d, dependent on the type of NPs (B vs. V). In general, VNPs showed to be more toxic than BNPs. However, the effects of VNPs were alleviated during the time of exposure, contrarily to BNPs (which became more toxic with extended duration). The present study adds important information about NPs toxicity with ecological significance (at the population level). Including long-term effects, the obtained results contributes to the improvement of NPs risk assessment.

18.
Toxics ; 9(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652851

RESUMEN

Once in the environment, nanoplastics (NPls) may interact with other contaminants, such as pharmaceuticals, potentially acting as carriers and modulating their toxicity. Thus, the main aim of the current study is to investigate how polystyrene (PS) NPls (mean diameter: 60 nm) interact with simvastatin (SIM), an anticholesterolemic drug, and modulate its toxicity to zebrafish (Danio rerio) embryos. PS NPls were carboxyl group functionalized, to promote the interaction/binding of NPls with SIM (worst-case scenarios) and it was fluorescently dyed, allowing to detect the intake. Exposure was 96 h to 0-150 mg/L NPls or 0-150 µg/L SIM, as well as to dual combinations (NPls 0.015 or 1.5 mg/L and SIM 12.5 or 15 µg/L). PS NPls alone did not exert effects whereas SIM (≥ 12.5 µg/L) significantly delayed the hatching, decreased the heartbeat, induced edemas and mortality. The combination of NPls (1.5 mg/L) and SIM (12.5 or 15 µg/L) had significant effects on the survival of the organisms while the correspondent NPls and SIM single exposures did not have significant effects on this endpoint. Concerning the malformations appearance, SIM alone had similar effects than when in co-exposures (0.015 mg/L NPls plus 12.5 or 15 µg/L SIM). Hatching and heartbeat increased after the co-exposures SIM and NPls comparing with SIM single exposures, showing that 0.015 mg/L NPls plus 12.5 or 15 µg/L SIM did not cause significant effects on these endpoints. This study shows that NPls effects on bioavailability and toxicity of other contaminants cannot be ignored when assessing the environmental behavior and risks of NPls.

19.
Aquat Toxicol ; 238: 105930, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34364155

RESUMEN

Engineered nanoparticles (NPs) are emerging contaminants of concern and it is important to understand their environmental behavior and ecological risks to exposed organisms. Despite their ubiquitous presence in the environment, there is little information about the hazards of certain NPs, such as boron (BNPs) and vanadium (VNPs). The aim of the present research was to investigate the effects of commercial BNPs and VNPs (80 to 100 nm) to zebrafish embryos, at different levels of biological organization. A range of nominal concentrations for both NPs (0, 0.01, 0.1, 1, and 10 mg/L) was tested. Due to the presence of triton X-100 in the NPs' stock dispersions, an additional control group was included (0.001% triton X-100). Survival, hatching, and malformations of embryos were assessed for 96 hours (h) exposure. Locomotor behavior was evaluated at 120 h. Furthermore, embryos were exposed to 0, 1, and 10 mg/L of NPs to evaluate a set of biomarker responses after 96 h: cholinesterase (ChE) and glutathione S-transferase (GST) activities, total glutathione (TG) and energy budgets levels. VNPs induced malformations (10 mg/L), hyperactivity (10 mg/L), erratic swimming (0.01 mg/L), altered swimming pattern (>0.01 mg/L), delayed hatching (10 mg/L) and altered biochemical responses involved in antioxidant defense (GST and TG at >1 mg/L), neurotransmission (ChE at 10 mg/L) and energy metabolism (lipids at >1 mg/L and carbohydrates at 10 mg/L). BNPs caused malformations (10 mg/L), affected swimming pattern (>0.01 mg/L), induced erratic swimming (10 mg/L) and decreased TG content and GST activity (>1 mg/L). At the same concentrations, VNPs affected a greater number of endpoints than BNPs, demonstrating a greater toxicity to zebrafish embryos. The present study shows that BNPs and VNPs may affect aquatic organisms, albeit at relatively great non-environmentally relevant concentrations, reinforcing the importance of the risk assessment of different NPs.

20.
Environ Pollut ; 286: 117571, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34438494

RESUMEN

Silver nanomaterials (AgNMs) are broadly used and among the most studied nanomaterials. The underlying molecular mechanisms (e.g. protein and metabolite response) that precede phenotypical effects have been assessed to a much lesser extent. In this paper, we assess differentially expressed proteins (DEPs) and metabolites (DEMs) by high-throughput (HTP) techniques (HPLC-MS/MS with tandem mass tags, reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) with mass spectrometric detection). In a time series (0, 7, 14 days), the standard soil model Enchytraeus crypticus was exposed to AgNM300K and AgNO3 at the reproduction EC20 and EC50. The impact on proteins/metabolites was clearly larger after 14 days. NM300K caused more upregulated DEPs/DEMs, more so at the EC20, whereas AgNO3 caused a dose response increase of DEPs/DEMs. Similar pathways were activated, although often via opposite regulation (up vs down) of DEPs, hence, dissimilar mechanisms underlie the apical observed impact. Affected pathways included e.g. energy and lipid metabolism and oxidative stress. Uniquely affected by AgNO3 was catalase, malate dehydrogenase and ATP-citrate synthase, and heat shock proteins (HSP70) and ferritin were affected by AgNM300K. The gene expression-based data in Adverse Outcome Pathway was confirmed and additional key events added, e.g. regulation of catalase and heat shock proteins were confirmed to be included. Finally, we observed (as we have seen before) that lower concentration of the NM caused higher biological impact. Data was deposited to ProteomeXchange, identifier PXD024444.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Contaminantes del Suelo , Iones , Metabolómica , Nanopartículas del Metal/toxicidad , Nanoestructuras/toxicidad , Proteómica , Plata/toxicidad , Contaminantes del Suelo/análisis , Espectrometría de Masas en Tándem , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA