RESUMEN
The myeloma bone marrow microenvironment promotes proliferation of malignant plasma cells and resistance to therapy. Activation of JAK/STAT signaling is thought to be a central component of these microenvironment-induced phenotypes. In a prior drug repurposing screen, we identified tofacitinib, a pan-JAK inhibitor Food and Drug Administration (FDA) approved for rheumatoid arthritis, as an agent that may reverse the tumor-stimulating effects of bone marrow mesenchymal stromal cells. Herein, we validated in vitro, in stromal-responsive human myeloma cell lines, and in vivo, in orthotopic disseminated xenograft models of myeloma, that tofacitinib showed efficacy in myeloma models. Furthermore, tofacitinib strongly synergized with venetoclax in coculture with bone marrow stromal cells but not in monoculture. Surprisingly, we found that ruxolitinib, an FDA approved agent targeting JAK1 and JAK2, did not lead to the same anti-myeloma effects. Combination with a novel irreversible JAK3-selective inhibitor also did not enhance ruxolitinib effects. Transcriptome analysis and unbiased phosphoproteomics revealed that bone marrow stromal cells stimulate a JAK/STAT-mediated proliferative program in myeloma cells, and tofacitinib reversed the large majority of these pro-growth signals. Taken together, our results suggest that tofacitinib reverses the growth-promoting effects of the tumor microenvironment. As tofacitinib is already FDA approved, these results can be rapidly translated into potential clinical benefits for myeloma patients.
Asunto(s)
Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Reposicionamiento de Medicamentos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Pirroles/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Animales , Comunicación Celular , Modelos Animales de Enfermedad , Humanos , Quinasas Janus/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Mieloma Múltiple/metabolismo , Fosfoproteínas/metabolismo , Piperidinas/administración & dosificación , Células Plasmáticas/metabolismo , Células Plasmáticas/patología , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteoma , Proteómica/métodos , Pirimidinas/administración & dosificación , Pirroles/administración & dosificación , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Background: Human cytomegalovirus (HCMV) is a herpesvirus with both lytic and latent life cycles. Human cytomegalovirus encodes 2 viral cytokines that are orthologs of human cellular interleukin 10 (cIL-10). Both cytomegalovirus interleukin 10 (cmvIL-10) and Latency-associated cytomegalovirus interleukin 10 (LAcmvIL-10) (collectively vIL-10) are expressed during lytic infection and cause immunosuppressive effects that impede virus clearance. LAcmvIL-10 is also expressed during latent infection of myeloid progenitor cells and monocytes and facilitates persistence. Here, we investigated whether vIL-10 could be detected during natural infection. Methods: Plasma from healthy blood donors was tested by enzyme-linked immunosorbent assay for anti-HCMV immunoglobulin G and immunoglobulin M and for cIL-10 and vIL-10 levels using a novel vIL-10 assay that detects cmvIL-10 and LAcmvIL-10, with no cross-reactivity to cIL-10. Results: vIL-10 was evident in HCMV+ donors (n = 19 of 26), at levels ranging 31-547 pg/mL. By comparison, cIL-10 was detected at lower levels ranging 3-69 pg/mL. There was a strong correlation between vIL-10 and cIL-10 levels (P = .01). Antibodies against vIL-10 were also detected and neutralized vIL-10 activity. Conclusions: vIL-10 was detected in peripheral blood of healthy blood donors. These findings suggest that vIL-10 may play a key role in sensing or modifying the host environment during latency and, therefore, may be a potential target for intervention strategies.
Asunto(s)
Infecciones por Citomegalovirus/sangre , Citomegalovirus/inmunología , Interleucina-10/sangre , Proteínas Virales/sangre , Anticuerpos Antivirales/sangre , Reacciones Cruzadas , Infecciones por Citomegalovirus/inmunología , Ensayo de Inmunoadsorción Enzimática , Voluntarios Sanos , Humanos , Tolerancia Inmunológica , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Interleucina-10/inmunología , Monocitos/inmunología , Proteínas Virales/inmunología , Latencia del VirusRESUMEN
Proteasome inhibitor (PI) resistance remains a central challenge in multiple myeloma. To identify pathways mediating resistance, we first mapped proteasome-associated genetic co-dependencies. We identified heat shock protein 70 (HSP70) chaperones as potential targets, consistent with proposed mechanisms of myeloma cells overcoming PI-induced stress. We therefore explored allosteric HSP70 inhibitors (JG compounds) as myeloma therapeutics. JG compounds exhibited increased efficacy against acquired and intrinsic PI-resistant myeloma models, unlike HSP90 inhibition. Shotgun and pulsed SILAC mass spectrometry demonstrated that JGs unexpectedly impact myeloma proteostasis by destabilizing the 55S mitoribosome. Our data suggest JGs have the most pronounced anti-myeloma effect not through inhibiting cytosolic HSP70 proteins but instead through mitochondrial-localized HSP70, HSPA9/mortalin. Analysis of myeloma patient data further supports strong effects of global proteostasis capacity, and particularly HSPA9 expression, on PI response. Our results characterize myeloma proteostasis networks under therapeutic pressure while motivating further investigation of HSPA9 as a specific vulnerability in PI-resistant disease.
Asunto(s)
Antineoplásicos , Mieloma Múltiple , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , ProteostasisRESUMEN
Since its introduction in 1971, the enzyme-linked immunosorbent assay (ELISA) has revolutionized medicine by enabling detection of both antigens and antibodies in a variety of samples. We describe here a customized sandwich ELISA developed for the detection of Human Cytomegalovirus interleukin-10 (cmvIL-10). CmvIL-10 is a virally encoded cytokine and ortholog of human interleukin 10 (hIL-10). While cmvIL-10 and hIL-10 are similar in structure and function, overall amino acid sequence identity is only 27%, resulting in antigenically distinct proteins. The cmvIL-10 ELISA is specific and does not detect hIL-10. The assay is sensitive enough to detect cmvIL-10 in both culture supernatants and patient serum. The ability to quantify cmvIL-10 levels during HCMV infection could provide valuable information about immune evasion strategies and viral control of host signaling pathways.
Asunto(s)
Citomegalovirus/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Interleucina-10/análisis , Anticuerpos Antivirales/metabolismo , Citocinas/metabolismo , Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/inmunología , Humanos , Interleucina-10/inmunología , Unión Proteica , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteínas Virales/metabolismoRESUMEN
The coronavirus disease 2019 (COVID-19) global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to place an immense burden on societies and health care systems. A key component of COVID-19 control efforts is serological testing to determine the community prevalence of SARS-CoV-2 exposure and quantify individual immune responses to prior SARS-CoV-2 infection or vaccination. Here, we describe a laboratory-developed antibody test that uses readily available research-grade reagents to detect SARS-CoV-2 exposure in patient blood samples with high sensitivity and specificity. We further show that this sensitive test affords the estimation of viral spike-specific IgG titers from a single sample measurement, thereby providing a simple and scalable method to measure the strength of an individual's immune response. The accuracy, adaptability, and cost-effectiveness of this test make it an excellent option for clinical deployment in the ongoing COVID-19 pandemic.IMPORTANCE Serological surveillance has become an important public health tool during the COVID-19 pandemic. Detection of protective antibodies and seroconversion after SARS-CoV-2 infection or vaccination can help guide patient care plans and public health policies. Serology tests can detect antibodies against past infections; consequently, they can help overcome the shortcomings of molecular tests, which can detect only active infections. This is important, especially when considering that many COVID-19 patients are asymptomatic. In this study, we describe an enzyme-linked immunosorbent assay (ELISA)-based qualitative and quantitative serology test developed to measure IgG and IgA antibodies against the SARS-CoV-2 spike glycoprotein. The test can be deployed using commonly available laboratory reagents and equipment and displays high specificity and sensitivity. Furthermore, we demonstrate that IgG titers in patient samples can be estimated from a single measurement, enabling the assay's use in high-throughput clinical environments.
Asunto(s)
Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Especificidad de Anticuerpos , COVID-19/epidemiología , Prueba Serológica para COVID-19/estadística & datos numéricos , Estudios de Casos y Controles , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/estadística & datos numéricos , Monitoreo Epidemiológico , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Pandemias , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto JovenRESUMEN
Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as a treatment for coronavirus disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200 mL of CCP with a spike protein IgG titer ≥ 1:2430 (median 1:47,385) within 72 hours of admission with propensity score-matched controls cared for at a medical center in the Bronx, between April 13 and May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroid use, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared with matched controls, CCP recipients less than 65 years had 4-fold lower risk of mortality and 4-fold lower risk of deterioration in oxygenation or mortality at day 28. For CCP recipients, pretransfusion spike protein IgG, IgM, and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients less than 65 years, but data from controlled trials are needed to validate this finding and establish the effect of aging on CCP efficacy.
Asunto(s)
Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , COVID-19/terapia , SARS-CoV-2/inmunología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/virología , Femenino , Mortalidad Hospitalaria , Humanos , Inmunización Pasiva/métodos , Masculino , Persona de Mediana Edad , Ciudad de Nueva York/epidemiología , Puntaje de Propensión , Estudios Retrospectivos , Glicoproteína de la Espiga del Coronavirus/inmunología , Resultado del Tratamiento , Sueroterapia para COVID-19RESUMEN
Enhancing the efficacy of proteasome inhibitors (PI) is a central goal in myeloma therapy. We proposed that signaling-level responses after PI may reveal new mechanisms of action that can be therapeutically exploited. Unbiased phosphoproteomics after treatment with the PI carfilzomib surprisingly demonstrates the most prominent phosphorylation changes on splicing related proteins. Spliceosome modulation is invisible to RNA or protein abundance alone. Transcriptome analysis after PI demonstrates broad-scale intron retention, suggestive of spliceosome interference, as well as specific alternative splicing of protein homeostasis machinery components. These findings lead us to evaluate direct spliceosome inhibition in myeloma, which synergizes with carfilzomib and shows potent anti-tumor activity. Functional genomics and exome sequencing further support the spliceosome as a specific vulnerability in myeloma. Our results propose splicing interference as an unrecognized modality of PI mechanism, reveal additional modes of spliceosome modulation, and suggest spliceosome targeting as a promising therapeutic strategy in myeloma.
Asunto(s)
Mieloma Múltiple/tratamiento farmacológico , Inhibidores de Proteasoma/administración & dosificación , Empalmosomas/efectos de los fármacos , Animales , Antineoplásicos/administración & dosificación , Femenino , Humanos , Ratones , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Oligopéptidos/administración & dosificación , Empalme del ARN/efectos de los fármacos , Empalmosomas/genética , Empalmosomas/metabolismo , Empalmosomas/microbiologíaRESUMEN
Convalescent plasma with severe acute respiratory disease coronavirus 2 (SARS-CoV-2) antibodies (CCP) may hold promise as treatment for Coronavirus Disease 2019 (COVID-19). We compared the mortality and clinical outcome of patients with COVID-19 who received 200mL of CCP with a Spike protein IgG titer ≥1:2,430 (median 1:47,385) within 72 hours of admission to propensity score-matched controls cared for at a medical center in the Bronx, between April 13 to May 4, 2020. Matching criteria for controls were age, sex, body mass index, race, ethnicity, comorbidities, week of admission, oxygen requirement, D-dimer, lymphocyte counts, corticosteroids, and anticoagulation use. There was no difference in mortality or oxygenation between CCP recipients and controls at day 28. When stratified by age, compared to matched controls, CCP recipients <65 years had 4-fold lower mortality and 4-fold lower deterioration in oxygenation or mortality at day 28. For CCP recipients, pre-transfusion Spike protein IgG, IgM and IgA titers were associated with mortality at day 28 in univariate analyses. No adverse effects of CCP were observed. Our results suggest CCP may be beneficial for hospitalized patients <65 years, but data from controlled trials is needed to validate this finding and establish the effect of ageing on CCP efficacy.
RESUMEN
A major driver of multiple myeloma (MM) is thought to be aberrant signaling, yet no kinase inhibitors have proven successful in the clinic. Here, we employed an integrated, systems approach combining phosphoproteomic and transcriptome analysis to dissect cellular signaling in MM to inform precision medicine strategies. Unbiased phosphoproteomics initially revealed differential activation of kinases across MM cell lines and that sensitivity to mammalian target of rapamycin (mTOR) inhibition may be particularly dependent on mTOR kinase baseline activity. We further noted differential activity of immediate downstream effectors of Ras as a function of cell line genotype. We extended these observations to patient transcriptome data in the Multiple Myeloma Research Foundation CoMMpass study. A machine-learning-based classifier identified surprisingly divergent transcriptional outputs between NRAS- and KRAS-mutated tumors. Genetic dependency and gene expression analysis revealed mutated Ras as a selective vulnerability, but not other MAPK pathway genes. Transcriptional analysis further suggested that aberrant MAPK pathway activation is only present in a fraction of RAS-mutated vs wild-type RAS patients. These high-MAPK patients, enriched for NRAS Q61 mutations, have inferior outcomes, whereas RAS mutations overall carry no survival impact. We further developed an interactive software tool to relate pharmacologic and genetic kinase dependencies in myeloma. Collectively, these predictive models identify vulnerable signaling signatures and highlight surprising differences in functional signaling patterns between NRAS and KRAS mutants invisible to the genomic landscape. These results will lead to improved stratification of MM patients in precision medicine trials while also revealing unexplored modes of Ras biology in MM.