Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Cell Sci ; 133(5)2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31964707

RESUMEN

Tumor-associated macrophages (TAMs) are detrimental in most cancers. Controlling their recruitment is thus potentially therapeutic. We previously found that TAMs perform protease-dependent mesenchymal migration in cancer, while macrophages perform amoeboid migration in other tissues. Inhibition of mesenchymal migration correlates with decreased TAM infiltration and tumor growth, providing rationale for a new cancer immunotherapy specifically targeting TAM motility. To identify new effectors of mesenchymal migration, we produced ER-Hoxb8-immortalized hematopoietic progenitors (cells with estrogen receptor-regulated Hoxb8 expression), which show unlimited proliferative ability in the presence of estrogen. The functionality of macrophages differentiated from ER-Hoxb8 progenitors was compared to bone marrow-derived macrophages (BMDMs). They polarized into M1- and M2-orientated macrophages, generated reactive oxygen species (ROS), ingested particles, formed podosomes, degraded the extracellular matrix, adopted amoeboid and mesenchymal migration in 3D, and infiltrated tumor explants ex vivo using mesenchymal migration. We also used the CRISPR/Cas9 system to disrupt gene expression of a known effector of mesenchymal migration, WASP (also known as WAS), to provide a proof of concept. We observed impaired podosome formation and mesenchymal migration capacity, thus recapitulating the phenotype of BMDM isolated from Wasp-knockout mice. Thus, we validate the use of ER-Hoxb8-immortalized macrophages as a potent tool to investigate macrophage functionalities.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Macrófagos , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Ingeniería Genética , Proteínas de Homeodominio/genética , Ratones
2.
Cell Mol Life Sci ; 78(17-18): 6087-6104, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34296319

RESUMEN

Different types of multinucleated giant cells (MGCs) of myeloid origin have been described; osteoclasts are the most extensively studied because of their importance in bone homeostasis. MGCs are formed by cell-to-cell fusion, and most types have been observed in pathological conditions, especially in infectious and non-infectious chronic inflammatory contexts. The precise role of the different MGCs and the mechanisms that govern their formation remain poorly understood, likely due to their heterogeneity. First, we will introduce the main populations of MGCs derived from the monocyte/macrophage lineage. We will then discuss the known molecular actors mediating the early stages of fusion, focusing on cell-surface receptors involved in the cell-to-cell adhesion steps that ultimately lead to multinucleation. Given that cell-to-cell fusion is a complex and well-coordinated process, we will also describe what is currently known about the evolution of F-actin-based structures involved in macrophage fusion, i.e., podosomes, zipper-like structures, and tunneling nanotubes (TNT). Finally, the localization and potential role of the key fusion mediators related to the formation of these F-actin structures will be discussed. This review intends to present the current status of knowledge of the molecular and cellular mechanisms supporting multinucleation of myeloid cells, highlighting the gaps still existing, and contributing to the proposition of potential disease-specific MGC markers and/or therapeutic targets.


Asunto(s)
Adhesión Celular , Células Gigantes/metabolismo , Células Mieloides/metabolismo , Podosomas/metabolismo , Células Gigantes/citología , Humanos , Integrinas/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Células Mieloides/citología , Células Mieloides/ultraestructura , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis , Receptores Inmunológicos/metabolismo
3.
J Cell Sci ; 132(24)2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836688

RESUMEN

Podosomes are dynamic adhesion structures formed constitutively by macrophages, dendritic cells and osteoclasts and transiently in a wide variety of cells, such as endothelial cells and megakaryocytes. They mediate numerous functions, including cell-matrix adhesion, extracellular matrix degradation, mechanosensing and cell migration. Podosomes present as micron-sized F-actin cores surrounded by an adhesive ring of integrins and integrin-actin linkers, such as talin and vinculin. In this Review, we highlight recent research that has considerably advanced our understanding of the complex architecture-function relationship of podosomes by demonstrating that the podosome ring actually consists of discontinuous nano-clusters and that the actin network in between podosomes comprises two subsets of unbranched actin filaments, lateral and dorsal podosome-connecting filaments. These lateral and dorsal podosome-connecting filaments connect the core and ring of individual podosomes and adjacent podosomes, respectively. We also highlight recent insights into the podosome cap as a novel regulatory module of actomyosin-based contractility. We propose that these newly identified features are instrumental for the ability of podosomes to generate protrusion forces and to mechanically probe their environment. Furthermore, these new results point to an increasing complexity of podosome architecture and have led to our current view of podosomes as autonomous force generators that drive cell migration.


Asunto(s)
Podosomas/metabolismo , Animales , Movimiento Celular/fisiología , Células Endoteliales/metabolismo , Humanos , Megacariocitos/metabolismo , Miosina Tipo II/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(11): E2556-E2565, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29463701

RESUMEN

Bone deficits are frequent in HIV-1-infected patients. We report here that osteoclasts, the cells specialized in bone resorption, are infected by HIV-1 in vivo in humanized mice and ex vivo in human joint biopsies. In vitro, infection of human osteoclasts occurs at different stages of osteoclastogenesis via cell-free viruses and, more efficiently, by transfer from infected T cells. HIV-1 infection markedly enhances adhesion and osteolytic activity of human osteoclasts by modifying the structure and function of the sealing zone, the osteoclast-specific bone degradation machinery. Indeed, the sealing zone is broader due to F-actin enrichment of its basal units (i.e., the podosomes). The viral protein Nef is involved in all HIV-1-induced effects partly through the activation of Src, a regulator of podosomes and of their assembly as a sealing zone. Supporting these results, Nef-transgenic mice exhibit an increased osteoclast density and bone defects, and osteoclasts derived from these animals display high osteolytic activity. Altogether, our study evidences osteoclasts as host cells for HIV-1 and their pathological contribution to bone disorders induced by this virus, in part via Nef.


Asunto(s)
Resorción Ósea/etiología , Infecciones por VIH/complicaciones , VIH-1/fisiología , Osteoclastos/virología , Actinas/metabolismo , Animales , Resorción Ósea/metabolismo , Resorción Ósea/patología , Resorción Ósea/fisiopatología , Huesos/metabolismo , Adhesión Celular , Femenino , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Infecciones por VIH/virología , VIH-1/genética , Humanos , Ratones , Osteoclastos/citología , Osteoclastos/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
5.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365752

RESUMEN

HIV-1 infection is frequently associated with low bone density, which can progress to osteoporosis leading to a high risk of fractures. Only a few mechanisms have been proposed to explain the enhanced osteolysis in the context of HIV-1 infection. As macrophages are involved in bone homeostasis and are critical host cells for HIV-1, we asked whether HIV-1-infected macrophages could participate in bone degradation. Upon infection, human macrophages acquired some osteoclast features: they became multinucleated, upregulated the osteoclast markers RhoE and ß3 integrin, and organized their podosomes as ring superstructures resembling osteoclast sealing zones. However, HIV-1-infected macrophages were not fully differentiated in osteoclasts as they did not upregulate NFATc-1 transcription factor and were unable to degrade bone. Investigating whether infected macrophages participate indirectly to virus-induced osteolysis, we showed that they produce RANK-L, the key osteoclastogenic cytokine. RANK-L secreted by HIV-1-infected macrophages was not sufficient to stimulate multinucleation, but promoted the protease-dependent migration of osteoclast precursors. In conclusion, we propose that, by stimulating RANK-L secretion, HIV-1-infected macrophages contribute to create a microenvironment that favors the recruitment of osteoclasts, participating in bone disorders observed in HIV-1 infected patients.


Asunto(s)
Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Macrófagos/metabolismo , Macrófagos/virología , Osteoclastos/inmunología , Ligando RANK/metabolismo , Biomarcadores , Movimiento Celular/inmunología , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Expresión Génica , Células Gigantes/virología , Infecciones por VIH/inmunología , Humanos , Macrófagos/inmunología , Osteólisis
6.
J Cell Sci ; 130(17): 2797-2807, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28724755

RESUMEN

Macrophages infiltrate and establish in developing organs from an early stage, often before these have become vascularized. Similarly, leukocytes, in general, can quickly migrate through tissues to any site of wounding. This unique capacity is rooted in their characteristic amoeboid motility, the genetic basis of which is poorly understood. Trim33 (also known as Tif1-γ), a nuclear protein that associates with specific DNA-binding transcription factors to modulate gene expression, has been found to be mainly involved in hematopoiesis and gene regulation mediated by TGF-ß. Here, we have discovered that in Trim33-deficient zebrafish embryos, primitive macrophages are unable to colonize the central nervous system to become microglia. Moreover, both macrophages and neutrophils of Trim33-deficient embryos display a reduced basal mobility within interstitial tissues, and a profound lack of a response to inflammatory recruitment signals, including local bacterial infections. Correlatively, Trim33-deficient mouse bone marrow-derived macrophages display a strongly reduced three-dimensional amoeboid mobility in fibrous collagen gels. The transcriptional regulator Trim33 is thus revealed as being essential for the navigation of macrophages and neutrophils towards developmental or inflammatory cues within vertebrate tissues.


Asunto(s)
Inflamación/patología , Macrófagos/metabolismo , Neutrófilos/metabolismo , Factores de Transcripción/metabolismo , Animales , Infecciones Bacterianas/patología , Células de la Médula Ósea/metabolismo , Movimiento Celular , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Inflamación/metabolismo , Ratones , Microglía/metabolismo , Mutación/genética , Células Mieloides/metabolismo , Retina/patología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Nano Lett ; 18(10): 6326-6333, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30232897

RESUMEN

In vivo, immune cells migrate through a wide variety of tissues, including confined and constricting environments. Deciphering how cells apply forces when infiltrating narrow areas is a critical issue that requires innovative experimental procedures. To reveal the distribution and dynamics of the forces of cells migrating in confined environments, we designed a device combining microchannels of controlled dimensions with integrated deformable micropillars serving as sensors of nanoscale subcellular forces. First, a specific process composed of two steps of photolithography and dry etching was tuned to obtain micrometric pillars of controlled stiffness and dimensions inside microchannels. Second, an image-analysis workflow was developed to automatically evaluate the amplitude and direction of the forces applied on the micropillars by migrating cells. Using this workflow, we show that this microdevice is a sensor of forces with a limit of detection down to 64 pN. Third, by recording pillar movements during the migration of macrophages inside the confining microchannels, we reveal that macrophages bent the pillars with typical forces of 0.3 nN and applied higher forces at the cell edges than around their nuclei. When the degree of confinement was increased, we found that forces were redirected from inward to outward. By providing a microdevice that allows the analysis of force direction and force magnitude developed by confined cells, our work paves the way for investigating the mechanical behavior of cells migrating though 3D constricted environments.


Asunto(s)
Técnicas de Cultivo de Célula , Núcleo Celular/química , Dispositivos Laboratorio en un Chip , Macrófagos/química , Técnicas Biosensibles/métodos , Adhesión Celular/genética , Movimiento Celular/genética , Núcleo Celular/genética , Microambiente Celular/genética , Voluntarios Sanos , Humanos , Fenómenos Mecánicos , Monocitos/química
8.
Immunol Rev ; 262(1): 216-31, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25319337

RESUMEN

Macrophages are professional migrating cells found in all body tissues from the early embryonic stages till the end of the adult life. Tissue macrophages do not only play beneficial roles. In several diseases, macrophages recruited from blood monocytes have a deleterious action such as favoring cancer progression and destroying tissues in chronic inflammation. To migrate in 3D environments, all leukocytes use the amoeboid movement while macrophages use the amoeboid and the mesenchymal migration modes. Mesenchymal migration takes place in dense matrices and involves podosomes and proteolysis of the extracellular matrix to create paths. Podosome disruption has been correlated with reduced mesenchymal migration of macrophages and unaffected amoeboid migration. Therefore, podosomes are proposed as a therapeutic target. Inhibiting podosome regulators that are only expressed in macrophages and few cell types would avoid collateral effects often encountered when ubiquitous proteins are used as drug targets. With the current status of our knowledge on human macrophage podosomes and 3D migration, the tyrosine kinase Hck appears to be a good candidate.


Asunto(s)
Movimiento Celular/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Adhesión Celular , Microambiente Celular , Matriz Extracelular/inmunología , Matriz Extracelular/metabolismo , Humanos , Macrófagos/patología , Especificidad de Órganos/inmunología , Péptido Hidrolasas/metabolismo , Fenotipo , Proteolisis
9.
Blood ; 125(10): 1611-22, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25527710

RESUMEN

Macrophages are motile leukocytes, targeted by HIV-1, thought to play a critical role in host dissemination of the virus. However, whether infection impacts their migration capacity remains unknown. We show that 2-dimensional migration and the 3-dimensional (3D) amoeboid migration mode of HIV-1-infected human monocyte-derived macrophages were inhibited, whereas the 3D mesenchymal migration was enhanced. The viral protein Nef was necessary and sufficient for all HIV-1-mediated effects on migration. In Nef transgenic mice, tissue infiltration of macrophages was increased in a tumor model and in several tissues at steady state, suggesting a dominant role for mesenchymal migration in vivo. The mesenchymal motility involves matrix proteolysis and podosomes, cell structures constitutive of monocyte-derived cells. Focusing on the mechanisms used by HIV-1 Nef to control the mesenchymal migration, we show that the stability, size, and proteolytic function of podosomes are increased via the phagocyte-specific kinase Hck and Wiskott-Aldrich syndrome protein (WASP), 2 major regulators of podosomes. In conclusion, HIV-1 reprograms macrophage migration, which likely explains macrophage accumulation in several patient tissues, which is a key step for virus spreading and pathogenesis. Moreover, Nef points out podosomes and the Hck/WASP signaling pathway as good candidates to control tissue infiltration of macrophages, a detrimental phenomenon in several diseases.


Asunto(s)
VIH-1/patogenicidad , Macrófagos/fisiología , Macrófagos/virología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/fisiología , Animales , Línea Celular Tumoral , Estructuras de la Membrana Celular/patología , Estructuras de la Membrana Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Reprogramación Celular/fisiología , Infecciones por VIH/patología , Infecciones por VIH/fisiopatología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/fisiología , Interacciones Huésped-Patógeno/fisiología , Humanos , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-hck/fisiología , Proteína del Síndrome de Wiskott-Aldrich/fisiología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
10.
Methods ; 94: 75-84, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26342257

RESUMEN

Podosomes are submicron adhesive and mechanosensitive structures formed by macrophages, dendritic cells and osteoclasts that are capable of protruding into the extracellular environment. Built of an F-actin core surrounded by an adhesion ring, podosomes assemble in a network interconnected by acto-myosin cables. They have been shown to display spatiotemporal instability as well as protrusion force oscillations. To analyse the entire population of these unstable structures, we have designed an automated multi-particle tracking adapted to both topographical and fluorescence data. Here we describe in detail this approach and report the measurements of individual and collective characteristics of podosome ensembles, providing an integrated picture of their activity from the complementary angles of organisation, dynamics, mobility and mechanics. We believe that this will lead to a comprehensive view of podosome collective behaviour and deepen our knowledge about the significance of mechanosensing mediated by protrusive structures.


Asunto(s)
Macrófagos/fisiología , Podosomas/fisiología , Células Cultivadas , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Macrófagos/ultraestructura , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Podosomas/ultraestructura
11.
Circulation ; 132(6): 490-501, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26068045

RESUMEN

BACKGROUND: Leukocyte migration is critical for the infiltration of monocytes and accumulation of monocyte-derived macrophages in inflammation. Considering that Hck and Fgr are instrumental in this process, their impact on atherosclerosis and on lesion inflammation and stability was evaluated. METHODS AND RESULTS: Hematopoietic Hck/Fgr-deficient, LDLr(-/-) chimeras, obtained by bone marrow transplantation, had smaller but, paradoxically, less stable lesions with reduced macrophage content, overt cap thinning, and necrotic core expansion as the most prominent features. Despite a Ly6C(high)-skewed proinflammatory monocyte phenotype, Hck/Fgr deficiency led to disrupted adhesion of myeloid cells to and transmigration across endothelial monolayers in vitro and atherosclerotic plaques in vivo, as assessed by intravital microscopy, flow cytometry, and histological examination of atherosclerotic arteries. Moreover, Hck/Fgr-deficient macrophages showed blunted podosome formation and mesenchymal migration capacity. In consequence, transmigrated double-knockout macrophages were seen to accumulate in the fibrous cap, potentially promoting its focal erosion, as observed for double-knockout chimeras. CONCLUSIONS: The hematopoietic deficiency of Hck and Fgr led to attenuated atherosclerotic plaque formation by abrogating endothelial adhesion and transmigration; paradoxically, it also promoted plaque instability by causing monocyte subset imbalance and subendothelial accumulation, raising a note of caution regarding src kinase-targeted intervention in plaque inflammation.


Asunto(s)
Quimiotaxis de Leucocito/fisiología , Macrófagos Peritoneales/patología , Monocitos/patología , Placa Aterosclerótica/patología , Proteínas Proto-Oncogénicas c-hck/deficiencia , Proteínas Proto-Oncogénicas/deficiencia , Familia-src Quinasas/deficiencia , Animales , Apoptosis , Adhesión Celular , Extensiones de la Superficie Celular/ultraestructura , Células Cultivadas , Células Endoteliales , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Rodamiento de Leucocito , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis , Placa Aterosclerótica/enzimología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-hck/genética , Proteínas Proto-Oncogénicas c-hck/fisiología , Quimera por Radiación , Receptores de LDL/deficiencia , Receptores de LDL/genética , Receptores de LDL/fisiología , Migración Transendotelial y Transepitelial , Familia-src Quinasas/genética , Familia-src Quinasas/fisiología
12.
J Cell Sci ; 127(Pt 18): 4009-23, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25015295

RESUMEN

Infiltration of macrophages into tissue can promote tumour development. Depending on the extracellular matrix architecture, macrophages can adopt two migration modes: amoeboid migration--common to all leukocytes, and mesenchymal migration--restricted to macrophages and certain tumour cells. Here, we investigate the initiating mechanisms involved in macrophage mesenchymal migration. We show that a single macrophage is able to use both migration modes. Macrophage mesenchymal migration is correlated with decreased activity of Rho/Rho-associated protein kinase (ROCK) and is potentiated when ROCK is inhibited, suggesting that amoeboid inhibition participates in mechanisms that initiate mesenchymal migration. We identify the cyclin-dependent kinase (CDK) inhibitor p27(kip1) (also known as CDKN1B) as a new effector of macrophage 3D-migration. By using p27(kip1) mutant mice and small interfering RNA targeting p27(kip1), we show that p27(kip1) promotes mesenchymal migration and hinders amoeboid migration upstream of the Rho/ROCK pathway, a process associated with a relocation of the protein from the nucleus to the cytoplasm. Finally, we observe that cytoplasmic p27(kip1) is required for in vivo infiltration of macrophages within induced tumours in mice. This study provides the first evidence that silencing of amoeboid migration through inhibition of the Rho/ROCK pathway by p27(kip1) participates in the onset of macrophage mesenchymal migration.


Asunto(s)
Movimiento Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Macrófagos/citología , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Células Cultivadas , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Humanos , Macrófagos/enzimología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Proteínas de Unión al GTP rho/genética , Quinasas Asociadas a rho/genética
13.
FASEB J ; 29(5): 1914-29, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25609430

RESUMEN

Models of microbe-elicited peritonitis have been invaluable to identify mechanisms underlying inflammation resolution, but whether resolution mechanisms differ from an inflammatory agent to another has not been determined. Thus, we analyzed the cellular and molecular components of the resolution phase of non-microbe-induced inflammation. In thioglycollate (TG)-induced peritonitis, resolution started at 12 h (Tmax) and displayed a 22 h resolution interval (Ri). During resolution, lipoxin A4, resolvin (Rv) D1 and RvD2, protectin D1 (PD1), and maresin 1 (MaR1) were transiently produced while RvD5 was continually generated. In addition, docosahexaenoic acid (DHA)-derived mediators were produced to a higher extent than in microbial peritonitis. We also investigated leukocyte infiltration and clearance in peritoneal tissues surrounding the inflammatory site. In the omentum, resolution parameters, neutrophil apoptosis, and efferocytosis were similar to those of the peritoneal cavity. However, we noticed long-term persistence of M2-polarized macrophages and B-lymphocytes in the omentum after TG administration, whereas zymosan injection caused M1/M2-macrophage and T-lymphocyte persistence regardless of the magnitude of the inflammatory response. Our study indicates that some aspects of resolution are shaped in a stimulus-specific manner, and it ultimately argues that the tissues surrounding the inflammatory site must also be considered to address the inflammatory response globally.


Asunto(s)
Linfocitos B/inmunología , Inflamación/inmunología , Leucocitos/inmunología , Macrófagos/inmunología , Peritonitis/inmunología , Peritonitis/metabolismo , Tioglicolatos/toxicidad , Animales , Apoptosis/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Western Blotting , Células Cultivadas , Ácidos Docosahexaenoicos/genética , Ácidos Docosahexaenoicos/metabolismo , Femenino , Citometría de Flujo , Técnicas para Inmunoenzimas , Inflamación/metabolismo , Inflamación/patología , Leucocitos/metabolismo , Leucocitos/patología , Lípidos/análisis , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Epiplón/inmunología , Epiplón/metabolismo , Epiplón/patología , Peritonitis/inducido químicamente , Fagocitosis/fisiología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Zimosan/toxicidad
14.
J Biol Chem ; 289(11): 7897-906, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24482227

RESUMEN

We have shown previously that tyrosine phosphorylation of Wiskott-Aldrich syndrome protein (WASP) is important for diverse macrophage functions including phagocytosis, chemotaxis, podosome dynamics, and matrix degradation. However, the specific tyrosine kinase mediating WASP phosphorylation is still unclear. Here, we provide evidence that Hck, which is predominantly expressed in leukocytes, can tyrosine phosphorylate WASP and regulates WASP-mediated macrophage functions. We demonstrate that tyrosine phosphorylation of WASP in response to stimulation with CX3CL1 or via Fcγ receptor ligation were severely reduced in Hck(-/-) bone marrow-derived macrophages (BMMs) or in RAW/LR5 macrophages in which Hck expression was silenced using RNA-mediated interference (Hck shRNA). Consistent with reduced WASP tyrosine phosphorylation, phagocytosis, chemotaxis, and matrix degradation are reduced in Hck(-/-) BMMs or Hck shRNA cells. In particular, WASP phosphorylation was primarily mediated by the p61 isoform of Hck. Our studies also show that Hck and WASP are required for passage through a dense three-dimensional matrix and transendothelial migration, suggesting that tyrosine phosphorylation of WASP by Hck may play a role in tissue infiltration of macrophages. Consistent with a role for this pathway in invasion, WASP(-/-) BMMs do not invade into tumor spheroids with the same efficiency as WT BMMs and cells expressing phospho-deficient WASP have reduced ability to promote carcinoma cell invasion. Altogether, our results indicate that tyrosine phosphorylation of WASP by Hck is required for proper macrophage functions.


Asunto(s)
Macrófagos/citología , Proteínas Proto-Oncogénicas c-hck/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Animales , Células de la Médula Ósea/citología , Línea Celular , Movimiento Celular , Quimiotaxis , Quimiotaxis de Leucocito , Colágeno/química , Cruzamientos Genéticos , Células Endoteliales/citología , Macrófagos/metabolismo , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Isoformas de Proteínas/química , Interferencia de ARN , Migración Transendotelial y Transepitelial , Tirosina/química
15.
Clin Sci (Lond) ; 129(4): 319-30, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25858460

RESUMEN

Circulating monocytes (Mo) play an essential role in the host immune response to chronic infections. We previously demonstrated that CD16(pos) Mo were expanded in TB (tuberculosis) patients, correlated with disease severity and were refractory to dendritic cell differentiation. In the present study, we investigated whether human Mo subsets (CD16(neg) and CD16(pos)) differed in their ability to influence the early inflammatory response against Mycobacterium tuberculosis. We first evaluated the capacity of the Mo subsets to migrate and engage a microbicidal response in vitro. Accordingly, CD16(neg) Mo were more prone to migrate in response to different mycobacteria-derived gradients, were more resistant to M. tuberculosis intracellular growth and produced higher reactive oxygen species than their CD16(pos) counterpart. To assess further the functional dichotomy among the human Mo subsets, we carried out an in vivo analysis by adapting a hybrid mouse model (SCID/Beige, where SCID is severe combined immunodeficient) to transfer each Mo subset, track their migratory fate during M. tuberculosis infection, and determine their impact on the host immune response. In M. tuberculosis-infected mice, the adoptively transferred CD16(neg) Mo displayed a higher lung migration index, induced a stronger pulmonary infiltration of murine leucocytes expressing pro- and anti-inflammatory cytokines, and significantly decreased the bacterial burden, in comparison with CD16(pos) Mo. Collectively, our results indicate that human Mo subsets display divergent biological roles in the context of M. tuberculosis infection, a scenario in which CD16(neg) Mo may contribute to the anti-mycobacterial immune response, whereas CD16(pos) Mo might promote microbial resilience, shedding light on a key aspect of the physiopathology of TB disease.


Asunto(s)
Pulmón/inmunología , Monocitos/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Carga Bacteriana , Células Cultivadas , Quimiotaxis de Leucocito , Modelos Animales de Enfermedad , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Interacciones Huésped-Patógeno , Humanos , Pulmón/metabolismo , Pulmón/microbiología , Ratones SCID , Monocitos/clasificación , Monocitos/metabolismo , Monocitos/microbiología , Monocitos/trasplante , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Estallido Respiratorio , Factores de Tiempo , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/microbiología
16.
J Immunol ; 191(11): 5501-14, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24163411

RESUMEN

Pregnancy is dependent on maternal-fetal tolerance that may be compromised because of infections or inflammation of the placenta. In this study, we examined whether the context of placental immune tolerance affected the functions of resident macrophages and if their functions were altered during chorioamnionitis, an infectious pathology of the placenta. Macrophages from at-term placentas expressed CD14, exhibited macrophage microbicidal functions, but were less inflammatory than monocyte-derived macrophages. Moreover, placental macrophages spontaneously matured into multinucleated giant cells (MGCs), a property not exhibited by monocyte-derived macrophages, and we detected MGCs of myeloid origin in placental tissue. Compared with placental macrophages, MGCs exhibited a specific phenotype and gene expression signature, consisting of increased cytoskeleton-associated gene expression along with depressed expression of inflammatory response genes. Furthermore, placental macrophages from patients with chorioamnionitis were unable to form MGCs, but this defect was partially corrected by incubating these placental macrophages with control trophoblast supernatants. MGCs formation likely serves to regulate their inflammatory and cytocidal activities in a context that imposes semiallograft acceptance and defense against pathogens.


Asunto(s)
Corioamnionitis/inmunología , Macrófagos/inmunología , Placenta/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus/inmunología , Adulto , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Corioamnionitis/etiología , Medios de Cultivo Condicionados/farmacología , Citoesqueleto/genética , Femenino , Regulación de la Expresión Génica/inmunología , Células Gigantes/inmunología , Humanos , Receptores de Lipopolisacáridos/metabolismo , Macrófagos/efectos de los fármacos , Placenta/patología , Embarazo , Infecciones Estreptocócicas/complicaciones , Tolerancia al Trasplante , Adulto Joven
17.
Immunol Cell Biol ; 92(8): 699-708, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24890643

RESUMEN

Mononuclear phagocytes (MP) comprise monocytes, macrophages (MΦ) and dendritic cells (DC), including their lineage-committed progenitors, which together have an eminent role in health and disease. Lipid-based siRNA-mediated gene inactivation is an established approach to investigate gene function in MP cells. However, although there are few protocols dedicated for siRNA-mediated gene inactivation in primary human DC and MΦ, there are none available for primary human monocytes. Moreover, there is no available method to perform comparative studies of a siRNA-mediated gene silencing in primary monocytes and other MP cells. Here, we describe a protocol optimized for the lipid-based delivery of siRNA to perform gene silencing in primary human blood monocytes, which is applicable to DCs, and differs from the classical route of siRNA delivery into MΦs. Along with this protocol, we provide a comparative analysis of how monocytes, DC and MΦ are efficiently transfected with the target siRNA without affecting cell viability, resulting in strong gene knockdown efficiency, including the simultaneous inactivation of two genes. Moreover, siRNA delivery does not affect classical functions in MP such as differentiation, phagocytosis and migration, demonstrating that this protocol does not induce non-specific major alterations in these cells. As a proof-of-principle, a functional analysis of hematopoietic cell kinase (Hck) shows for the first time that this kinase regulates the protease-dependent migration mode in human monocytes. Collectively, this protocol enables efficient gene inactivation in primary MP, suggesting a wide spectrum of applications such as siRNA-based high-throughput screening, which could ultimately improve our knowledge about MP biology.


Asunto(s)
Células Dendríticas/metabolismo , Silenciador del Gen , Macrófagos/metabolismo , Monocitos/metabolismo , ARN Interferente Pequeño/genética , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Movimiento Celular/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Macrófagos/citología , Macrófagos/inmunología , Ratones , Ratones Noqueados , Monocitos/citología , Monocitos/inmunología , Fagocitosis/inmunología , Proteínas Proto-Oncogénicas c-hck/genética , Proteínas Proto-Oncogénicas c-hck/metabolismo , Interferencia de ARN , ARN Mensajero/genética , Transfección
18.
FASEB J ; 27(9): 3608-18, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23742809

RESUMEN

In osteoclasts, Src controls podosome organization and bone degradation, which leads to an osteopetrotic phenotype in src(-/-) mice. Since this phenotype was even more severe in src(-/-)hck(-/-) mice, we examined the individual contribution of Hck in bone homeostasis. Compared to wt mice, hck(-/-) mice exhibited an osteopetrotic phenotype characterized by an increased density of trabecular bone and decreased bone degradation, although osteoclastogenesis was not impaired. Podosome organization and matrix degradation were found to be defective in hck(-/-) osteoclast precursors (preosteoclast) but were normal in mature hck(-/-) osteoclasts, probably through compensation by Src, which was specifically overexpressed in mature osteoclasts. As a consequence of podosome defects, the 3-dimensional migration of hck(-/-) preosteoclasts was strongly affected in vitro. In vivo, this translated by altered bone homing of preosteoclasts in hck(-/-) mice: in metatarsals of 1-wk-old mice, when bone formation strongly depends on the recruitment of these cells, reduced numbers of osteoclasts and abnormal developing trabecular bone were observed. This phenotype was still detectable in adults. In summmary, Hck is one of the very few effectors of preosteoclast recruitment described to date and thereby plays a critical role in bone remodeling.


Asunto(s)
Huesos/citología , Huesos/metabolismo , Movimiento Celular/fisiología , Osteoclastos/citología , Osteopetrosis/metabolismo , Proteínas Proto-Oncogénicas c-hck/metabolismo , Animales , Movimiento Celular/genética , Células Cultivadas , Femenino , Homeostasis/genética , Homeostasis/fisiología , Masculino , Ratones , Ratones Noqueados , Osteoclastos/metabolismo , Osteopetrosis/genética , Proteínas Proto-Oncogénicas c-hck/genética , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
19.
bioRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798563

RESUMEN

Osteoclasts are multinucleated cells unique in their ability to resorb bone. Osteoclastogenesis involves several steps of actin-driven rearrangements that participate not only in the cell-cell fusion process, but also in the formation of the sealing zone, the adhesive structure determining the resorption area. Despite the importance of these actin cytoskeleton-based processes, their precise mechanisms of regulation are still poorly characterized. Here, we found that moesin, a member of the Ezrin/Radixin/Moesin (ERM) protein family, is activated during osteoclast maturation and plays an instrumental role for both osteoclast fusion and function. In mouse and human osteoclast precursors, moesin is negatively regulated to potentiate their ability to fuse and degrade bone. Accordingly, we demonstrated that moesin depletion decreases membrane-to-cortex attachment and enhances formation of tunneling nanotubes (TNTs), F-actin-containing intercellular bridges that we revealed to trigger osteoclast fusion. In addition, via a ß3-integrin/RhoA/SLK pathway and independently of its role in fusion, moesin regulates the number and organization of sealing zones in mature osteoclast, and thus participates in the control of bone resorption. Supporting these findings, we found that moesin-deficient mice are osteopenic with a reduced density of trabecular bones and increased osteoclast abundance and activity. These findings provide a better understanding of the regulation of osteoclast biology, and open new opportunities to specifically target osteoclast activity in bone disease therapy.

20.
J Biol Chem ; 287(16): 13051-62, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22334688

RESUMEN

Filamin A (FLNa) is a cross-linker of actin filaments and serves as a scaffold protein mostly involved in the regulation of actin polymerization. It is distributed ubiquitously, and null mutations have strong consequences on embryonic development in humans, with organ defects which suggest deficiencies in cell migration. We have reported previously that macrophages, the archetypal migratory cells, use the protease- and podosome-dependent mesenchymal migration mode in dense three-dimensional environments, whereas they use the protease- and podosome-independent amoeboid mode in more porous matrices. Because FLNa has been shown to localize to podosomes, we hypothesized that the defects seen in patients carrying FLNa mutations could be related to the capacity of certain cell types to form podosomes. Using strategies based on FLNa knock-out, knockdown, and rescue, we show that FLNa (i) is involved in podosome stability and their organization as rosettes and three-dimensional podosomes, (ii) regulates the proteolysis of the matrix mediated by podosomes in macrophages, (iii) is required for podosome rosette formation triggered by Hck, and (iv) is necessary for mesenchymal migration but dispensable for amoeboid migration. These new functions assigned to FLNa, particularly its role in mesenchymal migration, could be directly related to the defects in cell migration described during the embryonic development in FLNa-defective patients.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Movimiento Celular/inmunología , Proteínas Contráctiles/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Proteínas de Microfilamentos/metabolismo , Animales , Proteínas Contráctiles/genética , Fibroblastos/citología , Filaminas , Humanos , Macrófagos/ultraestructura , Mecanotransducción Celular/fisiología , Mesodermo/citología , Ratones , Proteínas de Microfilamentos/genética , Células 3T3 NIH , Proteínas Proto-Oncogénicas c-hck/metabolismo , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA