Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Microb Cell Fact ; 23(1): 67, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402403

RESUMEN

BACKGROUND: In recent years, the production of inclusion bodies that retain substantial catalytic activity was demonstrated. These catalytically active inclusion bodies (CatIBs) are formed by genetic fusion of an aggregation-inducing tag to a gene of interest via short linker polypeptides. The resulting CatIBs are known for their easy and cost-efficient production, recyclability as well as their improved stability. Recent studies have outlined the cooperative effects of linker and aggregation-inducing tag on CatIB activities. However, no a priori prediction is possible so far to indicate the best combination thereof. Consequently, extensive screening is required to find the best performing CatIB variant. RESULTS: In this work, a semi-automated cloning workflow was implemented and used for fast generation of 63 CatIB variants with glucose dehydrogenase of Bacillus subtilis (BsGDH). Furthermore, the variant BsGDH-PT-CBDCell was used to develop, optimize and validate an automated CatIB screening workflow, enhancing the analysis of many CatIB candidates in parallel. Compared to previous studies with CatIBs, important optimization steps include the exclusion of plate position effects in the BioLector by changing the cultivation temperature. For the overall workflow including strain construction, the manual workload could be reduced from 59 to 7 h for 48 variants (88%). After demonstration of high reproducibility with 1.9% relative standard deviation across 42 biological replicates, the workflow was performed in combination with a Bayesian process model and Thompson sampling. While the process model is crucial to derive key performance indicators of CatIBs, Thompson sampling serves as a strategy to balance exploitation and exploration in screening procedures. Our methodology allowed analysis of 63 BsGDH-CatIB variants within only three batch experiments. Because of the high likelihood of TDoT-PT-BsGDH being the best CatIB performer, it was selected in 50 biological replicates during the three screening rounds, much more than other, low-performing variants. CONCLUSIONS: At the current state of knowledge, every new enzyme requires screening for different linker/aggregation-inducing tag combinations. For this purpose, the presented CatIB toolbox facilitates fast and simplified construction and screening procedures. The methodology thus assists in finding the best CatIB producer from large libraries in short time, rendering possible automated Design-Build-Test-Learn cycles to generate structure/function learnings.


Asunto(s)
Automatización de Laboratorios , Ensayos Analíticos de Alto Rendimiento , Reproducibilidad de los Resultados , Teorema de Bayes , Cuerpos de Inclusión , Automatización
2.
Appl Microbiol Biotechnol ; 108(1): 239, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407604

RESUMEN

Members of the bacterial phylum Planctomycetota have recently emerged as promising and for the most part untapped sources of novel bioactive compounds. The characterization of more than 100 novel species in the last decade stimulated recent bioprospection studies that start to unveil the chemical repertoire of the phylum. In this study, we performed systematic bioinformatic analyses based on the genomes of all 131 described members of the current phylum focusing on the identification of type III polyketide synthase (PKS) genes. Type III PKSs are versatile enzymes involved in the biosynthesis of a wide array of structurally diverse natural products with potent biological activities. We identified 96 putative type III PKS genes of which 58 are encoded in an operon with genes encoding a putative oxidoreductase and a methyltransferase. Sequence similarities on protein level and the genetic organization of the operon point towards a functional link to the structurally related hierridins recently discovered in picocyanobacteria. The heterologous expression of planctomycetal type III PKS genes from strains belonging to different families in an engineered Corynebacterium glutamicum strain led to the biosynthesis of pentadecyl- and heptadecylresorcinols. Phenotypic assays performed with the heterologous producer strains and a constructed type III PKS gene deletion mutant suggest that the natural function of the identified compounds differs from that confirmed in other bacterial alkylresorcinol producers. KEY POINTS: • Planctomycetal type III polyketide synthases synthesize long-chain alkylresorcinols. • Phylogenetic analyses suggest an ecological link to picocyanobacterial hierridins. • Engineered C. glutamicum is suitable for an expression of planctomycete-derived genes.


Asunto(s)
Aciltransferasas , Planctomicetos , Humanos , Filogenia , Operón
3.
BMC Biol ; 21(1): 183, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667306

RESUMEN

BACKGROUND: In contrast to modern rational metabolic engineering, classical strain development strongly relies on random mutagenesis and screening for the desired production phenotype. Nowadays, with the availability of biosensor-based FACS screening strategies, these random approaches are coming back into fashion. In this study, we employ this technology in combination with comparative genome analyses to identify novel mutations contributing to product formation in the genome of a Corynebacterium glutamicum L-histidine producer. Since all known genetic targets contributing to L-histidine production have been already rationally engineered in this strain, identification of novel beneficial mutations can be regarded as challenging, as they might not be intuitively linkable to L-histidine biosynthesis. RESULTS: In order to identify 100 improved strain variants that had each arisen independently, we performed > 600 chemical mutagenesis experiments, > 200 biosensor-based FACS screenings, isolated > 50,000 variants with increased fluorescence, and characterized > 4500 variants with regard to biomass formation and L-histidine production. Based on comparative genome analyses of these 100 variants accumulating 10-80% more L-histidine, we discovered several beneficial mutations. Combination of selected genetic modifications allowed for the construction of a strain variant characterized by a doubled L-histidine titer (29 mM) and product yield (0.13 C-mol C-mol-1) in comparison to the starting variant. CONCLUSIONS: This study may serve as a blueprint for the identification of novel beneficial mutations in microbial producers in a more systematic manner. This way, also previously unexplored genes or genes with previously unknown contribution to the respective production phenotype can be identified. We believe that this technology has a great potential to push industrial production strains towards maximum performance.


Asunto(s)
Bacterias , Histidina , Edición Génica , Mutagénesis , Mutación
4.
Metab Eng ; 77: 219-230, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37031949

RESUMEN

Malonyl-CoA is a central precursor for biosynthesis of a wide range of complex secondary metabolites. The development of platform strains with increased malonyl-CoA supply can contribute to the efficient production of secondary metabolites, especially if such strains exhibit high tolerance towards these chemicals. In this study, Pseudomonas taiwanensis VLB120 was engineered for increased malonyl-CoA availability to produce bacterial and plant-derived polyketides. A multi-target metabolic engineering strategy focusing on decreasing the malonyl-CoA drain and increasing malonyl-CoA precursor availability, led to an increased production of various malonyl-CoA-derived products, including pinosylvin, resveratrol and flaviolin. The production of flaviolin, a molecule deriving from five malonyl-CoA molecules, was doubled compared to the parental strain by this malonyl-CoA increasing strategy. Additionally, the engineered platform strain enabled production of up to 84 mg L-1 resveratrol from supplemented p-coumarate. One key finding of this study was that acetyl-CoA carboxylase overexpression majorly contributed to an increased malonyl-CoA availability for polyketide production in dependence on the used strain-background and whether downstream fatty acid synthesis was impaired, reflecting its complexity in metabolism. Hence, malonyl-CoA availability is primarily determined by competition of the production pathway with downstream fatty acid synthesis, while supply reactions are of secondary importance for compounds that derive directly from malonyl-CoA in Pseudomonas.


Asunto(s)
Malonil Coenzima A , Policétidos , Pseudomonas , Ácidos Grasos/metabolismo , Malonil Coenzima A/metabolismo , Policétidos/metabolismo , Pseudomonas/clasificación , Pseudomonas/genética , Pseudomonas/metabolismo , Resveratrol/metabolismo , Metabolismo Secundario , Estilbenos/metabolismo , Ácidos Cumáricos/metabolismo , Fenilalanina/metabolismo , Genoma Bacteriano/genética , Eliminación de Secuencia , Acetilcoenzima A/metabolismo , Citrato (si)-Sintasa/metabolismo , Ácido Pirúvico/metabolismo , Fitoalexinas/metabolismo , Naftoquinonas/metabolismo
5.
Microb Cell Fact ; 22(1): 209, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833813

RESUMEN

BACKGROUND: Phenylpropanoids such as p-coumaric acid represent important precursors for the synthesis of a broad range of plant secondary metabolites including stilbenoids, flavonoids, and lignans, which are of pharmacological interest due to their health-promoting properties. Although extraction from plant material or chemical synthesis is possible, microbial synthesis of p-coumaric acid from glucose has the advantage of being less expensive and more resource efficient. In this study, Corynebacterium glutamicum was engineered for the production of the plant polyphenol precursor p-coumaric acid from glucose. RESULTS: Heterologous expression of the tyrosine ammonia-lyase encoding gene from Flavobacterium johnsoniae enabled the conversion of endogenously provided tyrosine to p-coumaric acid. Product consumption was avoided by abolishing essential reactions of the phenylpropanoid degradation pathway. Accumulation of anthranilate as a major byproduct was eliminated by reducing the activity of anthranilate synthase through targeted mutagenesis to avoid tryptophan auxotrophy. Subsequently, the carbon flux into the shikimate pathway was increased, phenylalanine biosynthesis was reduced, and phosphoenolpyruvate availability was improved to boost p-coumaric acid accumulation. A maximum titer of 661 mg/L p-coumaric acid (4 mM) in defined mineral medium was reached. Finally, the production strain was utilized in co-cultivations with a C. glutamicum strain previously engineered for the conversion of p-coumaric acid into the polyphenol resveratrol. These co-cultivations enabled the synthesis of 31.2 mg/L (0.14 mM) resveratrol from glucose without any p-coumaric acid supplementation. CONCLUSIONS: The utilization of a heterologous tyrosine ammonia-lyase in combination with optimization of the shikimate pathway enabled the efficient production of p-coumaric acid with C. glutamicum. Reducing the carbon flux into the phenylalanine and tryptophan branches was the key to success along with the introduction of feedback-resistant enzyme variants.


Asunto(s)
Corynebacterium glutamicum , Resveratrol/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Triptófano/metabolismo , Plantas/genética , Glucosa/metabolismo , Polifenoles , Fenilalanina/metabolismo , Ingeniería Metabólica
6.
Biotechnol Bioeng ; 118(11): 4414-4427, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34343343

RESUMEN

3,4-Dihydroxybenzoate (protocatechuate, PCA) is a phenolic compound naturally found in edible vegetables and medicinal herbs. PCA is of high interest in the chemical industry and has wide potential for pharmaceutical applications. We designed and constructed a novel Corynebacterium glutamicum strain to enable the efficient utilization of d-xylose for microbial production of PCA. Shake flask cultivation of the engineered strain showed a maximum PCA titer of 62.1 ± 12.1 mM (9.6 ± 1.9 g L-1 ) from d-xylose as the primary carbon and energy source. The corresponding yield was 0.33 C-mol PCA per C-mol d-xylose, which corresponds to 38% of the maximum theoretical yield. Under growth-decoupled bioreactor conditions, a comparable PCA titer and a total amount of 16.5 ± 1.1 g PCA could be achieved when d-glucose and d-xylose were combined as orthogonal carbon substrates for biocatalyst provision and product synthesis, respectively. Downstream processing of PCA was realized via electrochemically induced crystallization by taking advantage of the pH-dependent properties of PCA. This resulted in a maximum final purity of 95.4%. The established PCA production process represents a highly sustainable approach, which will serve as a blueprint for the bio-based production of other hydroxybenzoic acids from alternative sugar feedstocks.


Asunto(s)
Corynebacterium glutamicum , Glucosa/metabolismo , Hidroxibenzoatos/metabolismo , Ingeniería Metabólica , Xilosa/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo
7.
Plant Physiol ; 179(3): 969-985, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30397021

RESUMEN

Edible berries are considered to be among nature's treasure chests as they contain a large number of (poly)phenols with potentially health-promoting properties. However, as berries contain complex (poly)phenol mixtures, it is challenging to associate any interesting pharmacological activity with a single compound. Thus, identification of pharmacologically interesting phenols requires systematic analyses of berry extracts. Here, raspberry (Rubus idaeus, var Prestige) extracts were systematically analyzed to identify bioactive compounds against pathological processes of neurodegenerative diseases. Berry extracts were tested on different Saccharomyces cerevisiae strains expressing disease proteins associated with Alzheimer's, Parkinson's, or Huntington's disease, or amyotrophic lateral sclerosis. After identifying bioactivity against Huntington's disease, the extract was fractionated and the obtained fractions were tested in the yeast model, which revealed that salidroside, a glycosylated phenol, displayed significant bioactivity. Subsequently, a metabolic route to salidroside was reconstructed in S cerevisiae and Corynebacterium glutamicum The best-performing S cerevisiae strain was capable of producing 2.1 mm (640 mg L-1) salidroside from Glc in shake flasks, whereas an engineered C glutamicum strain could efficiently convert the precursor tyrosol to salidroside, accumulating up to 32 mm (9,700 mg L-1) salidroside in bioreactor cultivations (yield: 0.81 mol mol-1). Targeted yeast assays verified that salidroside produced by both organisms has the same positive effects as salidroside of natural origin.


Asunto(s)
Glucósidos/biosíntesis , Proteína Huntingtina/química , Enfermedad de Huntington/metabolismo , Extractos Vegetales/química , Rubus/química , Vías Biosintéticas , Fraccionamiento Químico , Glucósidos/química , Glucósidos/metabolismo , Modelos Biológicos , Fenoles/química , Fenoles/metabolismo , Extractos Vegetales/aislamiento & purificación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Microb Cell Fact ; 19(1): 92, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32316987

RESUMEN

BACKGROUND: The phenylbutanoid 4-(4-hydroxyphenyl)butan-2-one, commonly known as raspberry ketone, is responsible for the typical scent and flavor of ripe raspberries. Chemical production of nature-identical raspberry ketone is well established as this compound is frequently used to flavor food, beverages and perfumes. However, high demand for natural raspberry ketone, but low natural abundance in raspberries, render raspberry ketone one of the most expensive natural flavoring components. RESULTS: In this study, Corynebacterium glutamicum was engineered for the microbial synthesis of the character impact compound raspberry ketone from supplemented p-coumaric acid. In this context, the NADPH-dependent curcumin/dihydrocurcumin reductase CurA from Escherichia coli was employed to catalyze the final step of raspberry ketone synthesis as it provides a hitherto unknown benzalacetone reductase activity. In combination with a 4-coumarate: CoA ligase from parsley (Petroselinum crispum) and a monofunctional benzalacetone synthase from Chinese rhubarb (Rheum palmatum), CurA constitutes the synthetic pathway for raspberry ketone synthesis in C. glutamicum. The resulting strain accumulated up to 99.8 mg/L (0.61 mM) raspberry ketone. In addition, supplementation of other phenylpropanoids allowed for the synthesis of two other naturally-occurring and flavoring phenylbutanoids, zingerone (70 mg/L, 0.36 mM) and benzylacetone (10.5 mg/L, 0.07 mM). CONCLUSION: The aromatic product portfolio of C. glutamicum was extended towards the synthesis of the flavoring phenylbutanoids raspberry ketone, zingerone and benzylacetone. Key to success was the identification of CurA from E. coli having a benzalacetone reductase activity. We believe, that the constructed C. glutamicum strain represents a versatile platform for the production of natural flavoring phenylbutanoids at larger scale.


Asunto(s)
Biotecnología , Butanoles/metabolismo , Butanonas/metabolismo , Corynebacterium glutamicum/metabolismo , Aromatizantes/metabolismo , Biocatálisis , Butanoles/química , Butanonas/química , Escherichia coli/enzimología , Aromatizantes/química , Ingeniería Metabólica , Oxidorreductasas/metabolismo
9.
Appl Microbiol Biotechnol ; 104(14): 6057-6065, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32385515

RESUMEN

Malonyl-CoA is an important central metabolite serving as the basic building block for the microbial synthesis of many pharmaceutically interesting polyketides, but also fatty acid-derived compounds including biofuels. Especially Saccharomyces cerevisiae, Escherichia coli, and Corynebacterium glutamicum have been engineered towards microbial synthesis of such compounds in recent years. However, developed strains and processes often suffer from insufficient productivity. Usually, tightly regulated intracellular malonyl-CoA availability is regarded as the decisive bottleneck limiting overall product formation. Therefore, metabolic engineering towards improved malonyl-CoA availability is essential to design efficient microbial cell factories for the production of polyketides and fatty acid derivatives. This review article summarizes metabolic engineering strategies to improve intracellular malonyl-CoA formation in industrially relevant microorganisms and its impact on productivity and product range, with a focus on polyketides and other malonyl-CoA-dependent products.Key Points• Malonyl-CoA is the central building block of polyketide synthesis.• Increasing acetyl-CoA supply is pivotal to improve malonyl-CoA availability.• Improved acetyl-CoA carboxylase activity increases availability of malonyl-CoA.• Fatty acid synthesis as an ambivalent target to improve malonyl-CoA supply.


Asunto(s)
Ácidos Grasos/metabolismo , Espacio Intracelular/metabolismo , Malonil Coenzima A/metabolismo , Policétidos/metabolismo , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Biocombustibles , Evolución Molecular Dirigida , Ingeniería Metabólica
10.
Chembiochem ; 20(7): 949-954, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30537293

RESUMEN

Phenylpropanoids and phenylpropanoid-derived plant polyphenols find numerous applications in the food and pharmaceutical industries. In recent years, several microbial platform organisms have been engineered towards producing such compounds. However, for the most part, microbial (poly)phenol production is inspired by nature, so naturally occurring compounds have predominantly been produced to date. Here we have taken advantage of the promiscuity of the enzymes involved in phenylpropanoid synthesis and exploited the versatility of an engineered Escherichia coli strain harboring a synthetic monolignol pathway to convert supplemented natural and unnatural phenylpropenoic acids into their corresponding monolignols. The performed biotransformations showed that this strain is able to catalyze the stepwise reduction of chemically interesting unnatural phenylpropenoic acids such as 3,4,5-trimethoxycinnamic acid, 5-bromoferulic acid, 2-nitroferulic acid, and a "bicyclic" p-coumaric acid derivative, in addition to six naturally occurring phenylpropenoic acids.


Asunto(s)
Escherichia coli/metabolismo , Fenilpropionatos/metabolismo , Propanoles/metabolismo , Oxidorreductasas de Alcohol/genética , Aldehído Oxidorreductasas/genética , Amoníaco-Liasas/genética , Coenzima A Ligasas/genética , Escherichia coli/genética , Ingeniería Metabólica/métodos , Naftoles/metabolismo , Petroselinum/enzimología , Fenoles/metabolismo , Rhodobacter sphaeroides/enzimología , Zea mays/enzimología
11.
Biotechnol Bioeng ; 116(6): 1380-1391, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30684355

RESUMEN

In recent years microorganisms have been engineered towards synthesizing interesting plant polyphenols such as flavonoids and stilbenes from glucose. Currently, the low endogenous supply of malonyl-CoA, indispensable for plant polyphenol synthesis, impedes high product titers. Usually, limited malonyl-CoA availability during plant polyphenol production is avoided by supplementing fatty acid synthesis-inhibiting antibiotics such as cerulenin, which are known to increase the intracellular malonyl-CoA pool as a side effect. Motivated by the goal of microbial polyphenol synthesis being independent of such expensive additives, we used rational metabolic engineering approaches to modulate regulation of fatty acid synthesis and flux into the tricarboxylic acid cycle (TCA cycle) in Corynebacterium glutamicum strains capable of flavonoid and stilbene synthesis. Initial experiments showed that sole overexpression of genes coding for the native malonyl-CoA-forming acetyl-CoA carboxylase is not sufficient for increasing polyphenol production in C. glutamicum. Hence, the intracellular acetyl-CoA availability was also increased by reducing the flux into the TCA cycle through reduction of citrate synthase activity. In defined cultivation medium, the constructed C. glutamicum strains accumulated 24 mg·L -1 (0.088 mM) naringenin or 112 mg·L -1 (0.49 mM) resveratrol from glucose without supplementation of phenylpropanoid precursor molecules or any inhibitors of fatty acid synthesis.


Asunto(s)
Corynebacterium glutamicum , Malonil Coenzima A , Ingeniería Metabólica/métodos , Fitoquímicos , Polifenoles , Reactores Biológicos , Citrato (si)-Sintasa/metabolismo , Ciclo del Ácido Cítrico/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Flavanonas , Malonil Coenzima A/análisis , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Fitoquímicos/análisis , Fitoquímicos/metabolismo , Polifenoles/análisis , Polifenoles/metabolismo , Resveratrol
12.
Microb Cell Fact ; 18(1): 71, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975146

RESUMEN

BACKGROUND: In the last years, different biotechnologically relevant microorganisms have been engineered for the synthesis of plant polyphenols such as flavonoids and stilbenes. However, low intracellular availability of malonyl-CoA as essential precursor for most plant polyphenols of interest is regarded as the decisive bottleneck preventing high product titers. RESULTS: In this study, Corynebacterium glutamicum, which emerged as promising cell factory for plant polyphenol production, was tailored by rational metabolic engineering towards providing significantly more malonyl-CoA for product synthesis. This was achieved by improving carbon source uptake, transcriptional deregulation of accBC and accD1 encoding the two subunits of the acetyl-CoA carboxylase (ACC), reduced flux into the tricarboxylic acid (TCA) cycle, and elimination of anaplerotic carboxylation of pyruvate. The constructed strains were used for the synthesis of the pharmacologically interesting plant pentaketide noreugenin, which is produced by plants such as Aloe arborescens from five molecules of malonyl-CoA. In this context, accumulation of the C1/C6 cyclized intermediate 1-(2,4,6-trihydroxyphenyl)butane-1,3-dione (TPBD) was observed, which could be fully cyclized to the bicyclic product noreugenin by acidification. CONCLUSION: The best strain C. glutamicum Nor2 C5 mufasOBCD1 PO6-iolT1 ∆pyc allowed for synthesis of 53.32 mg/L (0.278 mM) noreugenin in CGXII medium supplemented with casamino acids within 24 h.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Glicósidos/biosíntesis , Malonil Coenzima A/metabolismo , Ingeniería Metabólica , Plantas/química , Acetil-CoA Carboxilasa/metabolismo , Ciclo del Ácido Cítrico , Polifenoles/biosíntesis , Ácido Pirúvico/metabolismo
13.
Appl Microbiol Biotechnol ; 103(23-24): 9619-9631, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31686146

RESUMEN

Type I polyketide synthases (PKSs) are large multi-domain proteins converting simple acyl-CoA thioesters such as acetyl-CoA and malonyl-CoA to a large diversity of biotechnologically interesting molecules. Such multi-step reaction cascades are of particular interest for applications in engineered microbial cell factories, as the introduction of a single protein with many enzymatic activities does not require balancing of several individual enzymatic activities. However, functional introduction of type I PKSs into heterologous hosts is very challenging as the large polypeptide chains often do not fold properly. In addition, PKS usually require post-translational activation by dedicated 4'-phosphopantetheinyl transferases (PPTases). Here, we introduce an engineered Corynebacterium glutamicum strain as a novel microbial cell factory for type I PKS-derived products. Suitability of C. glutamicum for polyketide synthesis could be demonstrated by the functional introduction of the 6-methylsalicylic acid synthase ChlB1 from Streptomyces antibioticus. Challenges related to protein folding could be overcome by translation fusion of ChlB1Sa to the C-terminus of the maltose-binding protein MalE from Escherichia coli. Surprisingly, ChlB1Sa was also active in the absence of a heterologous PPTase, which finally led to the discovery that the endogenous PPTase PptACg of C. glutamicum can also activate ChlB1Sa. The best strain, engineered to provide increased levels of acetyl-CoA and malonyl-CoA, accumulated up to 41 mg/L (0.27 mM) 6-methylsalicylic acid within 48 h of cultivation. Further experiments showed that PptACg of C. glutamicum can also activate nonribosomal peptide synthetases (NRPSs), rendering C. glutamicum a promising microbial cell factory for the production of several fine chemicals and medicinal drugs.


Asunto(s)
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Salicilatos/metabolismo , Escherichia coli/metabolismo , Microbiología Industrial , Ingeniería Metabólica/métodos , Streptomyces antibioticus/enzimología
14.
Microb Cell Fact ; 17(1): 70, 2018 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-29753327

RESUMEN

BACKGROUND: Hydroxybenzoic acids are industrially relevant aromatic compounds, which also play key roles in the microbial carbon metabolism, e.g., as precursors for the synthesis of cofactors or metal-chelating molecules. Due to its pronounced resistance to aromatics Corynebacterium glutamicum represents an interesting platform for production of these compounds. Unfortunately, a complex catabolic network for aromatic molecules prevents application of C. glutamicum for microbial production of aromatic compounds other than aromatic amino acids, which cannot be metabolized by this microorganism. RESULTS: We completed the construction of the platform strain C. glutamicum DelAro5, in which the deletion of altogether 27 genes in five gene clusters abolished most of the peripheral and central catabolic pathways for aromatic compounds known in this microorganism. The obtained strain was subsequently applied for the production of 2-hydroxybenzoate (salicylate), 3-hydroxybenzoate, 4-hydroxybenzoate and protocatechuate, which all derive from intermediates of the aromatic amino acid-forming shikimate pathway. For an optimal connection of the designed hydroxybenzoate production pathways to the host metabolism, C. glutamicum was additionally engineered towards increased supply of the shikimate pathway substrates erythrose-4-phosphate and phosphoenolpyruvate by manipulation of the glucose transport and key enzymatic activities of the central carbon metabolism. With an optimized genetic background the constructed strains produced 0.01 g/L (0.07 mM) 2-hydroxybenzoate, 0.3 g/L (2.2 mM) 3-hydroxybenzoate, 2.0 g/L (13.0 mM) protocatechuate and 3.3 g/L (23.9 mM) 4-hydroxybenzoate in shaking flasks. CONCLUSION: By abolishing its natural catabolic network for aromatic compounds, C. glutamicum was turned into a versatile microbial platform for aromatics production, which could be exemplarily demonstrated by rapidly engineering this platform organism towards producing four biotechnologically interesting hydroxybenzoates. Production of these compounds was optimized following different metabolic engineering strategies leading to increased precursor availability. The constructed C. glutamicum strains are promising hosts for the production of hydroxybenzoates and other aromatic compounds at larger scales.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Hidroxibenzoatos/metabolismo , Ingeniería Metabólica/métodos
15.
Appl Microbiol Biotechnol ; 102(4): 1575-1585, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29340710

RESUMEN

Plants synthesize several thousand different polyphenols of which many have the potential to aid in preventing or treating cancer, cardiovascular, and neurodegenerative diseases. However, plants usually contain complex polyphenol mixtures impeding access to individual compounds in larger quantities. In contrast, functional integration of biosynthetic plant polyphenol pathways into microorganisms allows for the production of individual polyphenols as chemically distinct compounds, which can be synthesized in large amounts and can be more easily isolated. Over the last decade, microbial synthesis of many plant polyphenols could be achieved, and along the way, many decisive bottlenecks in the endogenous microbial host metabolism as well as in the heterologous plant pathways could be identified. In this review, we present recent advancements in metabolic engineering of microorganisms for the production of plant polyphenols and discuss how current challenges could be addressed in the future.


Asunto(s)
Bacterias/metabolismo , Hongos/metabolismo , Microbiología Industrial/métodos , Ingeniería Metabólica/métodos , Fitoquímicos/metabolismo , Polifenoles/metabolismo , Bacterias/genética , Hongos/genética
16.
Metab Eng ; 42: 33-42, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28550000

RESUMEN

ß-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical ß-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, but can also be involved in the utilization of aromatic compounds, amino acids and dicarboxylic acids. Each enzymatic step of a typical ß-oxidation cycle is reversible, offering the possibility to also take advantage of reversed metabolic pathways for applied purposes. In such cases, 3-oxoacyl-CoA thiolases, which catalyze the final chain-shortening step in the catabolic direction, mediate the condensation of an acyl-CoA starter molecule with acetyl-CoA in the anabolic direction. Subsequently, the carbonyl-group at C3 is stepwise reduced and dehydrated yielding a chain-elongated product. In the last years, several ß-oxidation pathways have been studied in detail and reversal of these pathways already proved to be a promising strategy for the production of chemicals and polymer building blocks in several industrially relevant microorganisms. This review covers recent advancements in this field and discusses constraints and bottlenecks of this metabolic strategy in comparison to alternative production pathways.


Asunto(s)
Acetilcoenzima A/metabolismo , Acetil-CoA C-Aciltransferasa/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Plásticos Biodegradables/metabolismo , Acetilcoenzima A/genética , Acetil-CoA C-Aciltransferasa/genética , Bacterias/genética , Proteínas Bacterianas/genética , Oxidación-Reducción
17.
Biotechnol Lett ; 39(2): 283-288, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27783176

RESUMEN

OBJECTIVES: To explore systemic effects of mutations in the UDP-N-acetylmuramoylalanyl-D-glutamate 2,6-diaminopimelate ligase (MurE) of Corynebacterium glutamicum, that leads to extracellular L-lysine accumulation by this bacterium. RESULTS: The analysis of a mutant cohort of C. glutamicum strains carrying all possible 20 amino acids at position 81 of MurE revealed unexpected effects on cellular properties. With increasing L-lysine accumulation the growth rate of the producing strain is reduced. A dynamic flux balance analysis including the flux over MurE fully supports this finding and suggests that further reductions at this flux control point would enhance L-lysine accumulation even further. The strain carrying the best MurE variant MurE-G81K produces 37 mM L-lysine with a yield of 0.17 g/g (L-lysine·HCl/glucose·H2O), bearing no other genetic modification. Interestingly, among the strains with high L-lysine titers, strain variants occur which, despite possessing the desired amino acid substitutions in MurE, have regained close to normal growth and correspondingly lower L-lysine accumulation. Genome analyses of such variants revealed the transposition of mobile genetic elements which apparently annulled the favorable consequences of the MurE mutations on L-lysine formation. CONCLUSION: MurE is an attractive target to achieve high L-lysine accumulation, and product formation is inversely related to the specific growth rate. Moreover, single point mutations leading to elevated L-lysine titers may cause systemic effects on different levels comprising also major genome modifications. The latter caused by the activity of mobile genetic elements, most likely due to the stress conditions being characteristic for microbial metabolite producers.


Asunto(s)
Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/enzimología , Corynebacterium glutamicum/metabolismo , Lisina/metabolismo , Péptido Sintasas/metabolismo , Proteínas Bacterianas/genética , Péptido Sintasas/genética
18.
Metab Eng ; 38: 47-55, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27288926

RESUMEN

Corynebacterium glutamicum is an important organism in industrial biotechnology for the microbial production of bulk chemicals, in particular amino acids. However, until now activity of a complex catabolic network for the degradation of aromatic compounds averted application of C. glutamicum as production host for aromatic compounds of pharmaceutical or biotechnological interest. In the course of the construction of a suitable C. glutamicum platform strain for plant polyphenol production, four gene clusters comprising 21 genes involved in the catabolism of aromatic compounds were deleted. Expression of plant-derived and codon-optimized genes coding for a chalcone synthase (CHS) and a chalcone isomerase (CHI) in this strain background enabled formation of 35mg/L naringenin and 37mg/L eriodictyol from the supplemented phenylpropanoids p-coumaric acid and caffeic acid, respectively. Furthermore, expression of genes coding for a 4-coumarate: CoA-ligase (4CL) and a stilbene synthase (STS) led to the production of the stilbenes pinosylvin, resveratrol and piceatannol starting from supplemented phenylpropanoids cinnamic acid, p-coumaric acid and caffeic acid, respectively. Stilbene concentrations of up to 158mg/L could be achieved. Additional engineering of the amino acid metabolism for an optimal connection to the synthetic plant polyphenol pathways enabled resveratrol production directly from glucose. The construction of these C. glutamicum platform strains for the synthesis of plant polyphenols opens the door towards the microbial production of high-value aromatic compounds from cheap carbon sources with this microorganism.


Asunto(s)
Corynebacterium glutamicum/fisiología , Flavanonas/biosíntesis , Mejoramiento Genético/métodos , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Estilbenos/metabolismo , Proteínas Bacterianas/genética , Vías Biosintéticas/genética , Flavanonas/aislamiento & purificación , Regulación Bacteriana de la Expresión Génica/genética , Especificidad de la Especie , Estilbenos/aislamiento & purificación
19.
Metab Eng ; 38: 436-445, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27746323

RESUMEN

The pentanol isomers 2-methyl-1-butanol and 3-methyl-1-butanol represent commercially interesting alcohols due to their potential application as biofuels. For a sustainable microbial production of these compounds, Corynebacterium glutamicum was engineered for producing 2-methyl-1-butanol and 3-methyl-1-butanol via the Ehrlich pathway from 2-keto-3-methylvalerate and 2-ketoisocaproate, respectively. In addition to an already available 2-ketoisocaproate producer, a 2-keto-3-methylvalerate accumulating C. glutamicum strain was also constructed. For this purpose, we reduced the activity of the branched-chain amino acid transaminase in an available C. glutamicuml-isoleucine producer (K2P55) via a start codon exchange in the ilvE gene enabling accumulation of up to 3.67g/l 2-keto-3-methylvalerate. Subsequently, nine strains expressing different gene combinations for three 2-keto acid decarboxylases and three alcohol dehydrogenases were constructed and characterized. The best strains accumulated 0.37g/l 2-methyl-1-butanol and 2.76g/l 3-methyl-1-butanol in defined medium within 48h under oxygen deprivation conditions, making these strains ideal candidates for additional strain and process optimization.


Asunto(s)
Vías Biosintéticas/genética , Butanoles/metabolismo , Corynebacterium glutamicum/fisiología , Mejoramiento Genético/métodos , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Transaminasas/genética , Butanoles/aislamiento & purificación , Regulación Bacteriana de la Expresión Génica/genética
20.
Appl Microbiol Biotechnol ; 100(4): 1871-1881, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26610800

RESUMEN

Phenylpropanoids as abundant, lignin-derived compounds represent sustainable feedstocks for biotechnological production processes. We found that the biotechnologically important soil bacterium Corynebacterium glutamicum is able to grow on phenylpropanoids such as p-coumaric acid, ferulic acid, caffeic acid, and 3-(4-hydroxyphenyl)propionic acid as sole carbon and energy sources. Global gene expression analyses identified a gene cluster (cg0340-cg0341 and cg0344-cg0347), which showed increased transcription levels in response to phenylpropanoids. The gene cg0340 (designated phdT) encodes for a putative transporter protein, whereas cg0341 and cg0344-cg0347 (phdA-E) encode enzymes involved in the ß-oxidation of phenylpropanoids. The phd gene cluster is transcriptionally controlled by a MarR-type repressor encoded by cg0343 (phdR). Cultivation experiments conducted with C. glutamicum strains carrying single-gene deletions showed that loss of phdA, phdB, phdC, or phdE abolished growth of C. glutamicum with all phenylpropanoid substrates tested. The deletion of phdD (encoding for putative acyl-CoA dehydrogenase) additionally abolished growth with the α,ß-saturated phenylpropanoid 3-(4-hydroxyphenyl)propionic acid. However, the observed growth defect of all constructed single-gene deletion strains could be abolished through plasmid-borne expression of the respective genes. These results and the intracellular accumulation of pathway intermediates determined via LC-ESI-MS/MS in single-gene deletion mutants showed that the phd gene cluster encodes for a CoA-dependent, ß-oxidative deacetylation pathway, which is essential for the utilization of phenylpropanoids in C. glutamicum.


Asunto(s)
Derivados del Benceno/metabolismo , Cinamatos/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Redes y Vías Metabólicas/genética , Familia de Multigenes , Carbono/metabolismo , Metabolismo Energético , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA