Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Chem Biodivers ; : e202400935, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818650

RESUMEN

The study focuses on the anxiolytic potential of chalcone (2E,4E)-1-(2-hydroxyphenyl)-5-phenylpenta-2,4-dien-1-one (CHALCNM) in adult zebrafish. Successfully synthesized in 58% yield, CHALCNM demonstrated no toxicity after 96 h of exposure. In behavioral tests, CHALCNM (40 mg/kg) reduced locomotor activity and promoted less anxious behavior in zebrafish, confirmed by increased permanence in the light zone of the aquarium. Flumazenil reversed its anxiolytic effect, indicating interaction with GABAA receptors. Furthermore, CHALCNM (4 and 20 mg/kg) preserved zebrafish memory in inhibitory avoidance tests. Virtual screening and ADMET profile studies suggest high oral bioavailability, access to the CNS, favored by low topological polarity (TPSA ≤ 75 Ų) and low incidence of hepatotoxicity, standing out as a promising pharmacological agent against the GABAergic system. In molecular coupling, CHALCNM demonstrated superior affinity to diazepam for the GABAA receptor. These results reinforce the therapeutic potential of CHALCNM in the treatment of anxiety, highlighting its possible future clinical application.

2.
Chem Biodivers ; : e202400538, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639566

RESUMEN

This is the first study to analyze the anti-inflammatory and antinociceptive effect of withanicandrin, isolated from Datura Ferox leaves, and the possible mechanism of action involved in adult zebrafish (ZFa). To this end, the animals were treated intraperitoneally (i. p.) with withanicandrin (4; 20 and 40 mg/kg; 20 µL) and subjected to locomotor activity and acute toxicity. Nociception tests were also carried out with chemical agents, in addition to tests to evaluate inflammatory processes induced by κ-Carrageenan 1.5 % and a Molecular Docking study. As a result, withanicandrin reduced nociceptive behavior by capsaicin at a dose of 40 mg/kg and by acid saline at doses of 4 and 40 mg/kg, through neuromodulation of TRPV1 channels and ASICs, identified through blocking the antinociceptive effect of withanicandrin by the antagonists capsazepine and naloxone. Furthermore, withanicandrin caused an anti-inflammatory effect through the reduction of abdominal edema, absence of leukocyte infiltrate in the liver tissue and reduction of ROS in thel liver tissue and presented better affinity energy compared to control morphine (TRPV1) and ibuprofen (COX-1 and COX-2).

3.
Arch Biochem Biophys ; 748: 109782, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839789

RESUMEN

The efflux pump mechanism contributes to the antibiotic resistance of widely distributed strains of Staphylococcus aureus. Therefore, in the present work, the ability of the riparins N-(4-methoxyphenethyl)benzamide (I), 2-hydroxy-N-[2-(4-methoxyphenyl)ethyl]benzamide (II), 2, 6-dihydroxy-N-[ 2-(4-methoxyphenyl)ethyl]benzamide (III), and 3,4,5-trimethoxy-N-[2-(4-methoxyphenethyl)benzamide (IV) as potential inhibitors of the MepA efflux pump in S. aureus K2068 (fluoroquinolone-resistant). In addition, we performed checkerboard assays to obtain more information about the activity of riparins as potential inhibitors of MepA efflux and also analyzed the ability of riparins to act on the permeability of the bacterial membrane of S. aureus by the fluorescence method with SYTOX Green. A molecular coupling assay was performed to characterize the interaction between riparins and MepA, and ADMET (absorption, distribution, metabolism, and excretion) properties were analyzed. We observed that I-IV riparins did not show direct antibacterial activity against S. aureus. However, combination assays with substrates of MepA, ciprofloxacin, and ethidium bromide (EtBr) revealed a potentiation of the efficacy of these substrates by reducing the minimum inhibitory concentration (MIC). Furthermore, increased EtBr fluorescence emission was observed for all riparins. The checkerboard assay showed synergism between riparins I, II, and III, ciprofloxacin, and EtBr. Furthermore, riparins III and IV exhibited permeability in the S. aureus membrane at a concentration of 200 µg/mL. Molecular docking showed that riparins I, II, and III bound in a different region from the binding site of chlorpromazine (standard pump inhibitor), indicating a possible synergistic effect with the reference inhibitor. In contrast, riparin IV binds in the same region as the chlorpromazine binding site. From the in silico ADMET prediction based on MPO, it could be concluded that the molecules of riparin I-IV present their physicochemical properties within the ideal pharmacological spectrum allowing their preparation as an oral drug. Furthermore, the prediction of cytotoxicity in liver cell lines showed a low cytotoxic effect for riparins I-IV.


Asunto(s)
Clorpromazina , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Simulación del Acoplamiento Molecular , Clorpromazina/metabolismo , Clorpromazina/farmacología , Antibacterianos/química , Ciprofloxacina/farmacología , Etidio , Benzamidas/farmacología , Benzamidas/química , Benzamidas/metabolismo , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana
4.
Neurochem Res ; 48(1): 250-262, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36066698

RESUMEN

Parkinson's disease (PD) is characterized by dopaminergic cell loss in the substantia nigra, and PD brains show neuroinflammation, oxidative stress, and mitochondrial dysfunction. The study evaluated the neuroprotective activity of 1α,25-dihydroxy vitamin D3 (VD3), on the rotenone (ROT)-induced cytotoxicity in PC12 cells. The viability parameters were assessed by the MTT and flow cytometry, on cells treated or not with VD3 and/or ROT. Besides, ROS production, cell death, mitochondrial transmembrane potential, reduced GSH, superoxide accumulation, molecular docking (TH and Keap1-Nrf2), and TH, Nrf2, NF-kB, and VD3 receptor protein contents by western blot were evaluated. VD3 was shown to improve the viability of ROT-exposed cells. Cells exposed to ROT showed increased production of ROS and superoxide, which decreased after VD3. ROT decrease in the mitochondrial transmembrane potential was prevented, after VD3 treatment and, VD3 was shown to interact with tyrosine hydroxylase (TH) and Nrf2. While ROT decreased TH, Nrf2, and NF-kB expressions, these effects were reversed by VD3. In addition, VD3 also increased VD3 receptor protein contents and values went back to those of controls after ROT exposure. VD3 protects PC12 cells against ROT damage, by decreasing oxidative stress and improving mitochondrial function. One target seems to be the TH molecule and possibly an indirect Nrf2 activation could also justify its neuroprotective actions on this PC12 cell model of PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Rotenona/toxicidad , Células PC12 , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Especies Reactivas de Oxígeno/metabolismo , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Superóxidos/metabolismo , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo
5.
Planta Med ; 89(10): 979-989, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36940928

RESUMEN

Rauvolfia species are well known as producers of bioactive monoterpene indole alkaloids, which exhibit a broad spectrum of biological activities. A new vobasine-sarpagan-type bisindole alkaloid (1: ) along with six known monomeric indoles (2, 3/4, 5: , and 6/7: ) were isolated from the ethanol extract of the roots of Rauvolfia ligustrina. The structure of the new compound was elucidated by interpretation of their spectroscopic data (1D and 2D NMR and HRESIMS) and comparison with published data for analog compounds. The cytotoxicity of the isolated compounds was screened in a zebrafish (Danio rerio) model. The possible GABAergic (diazepam as the positive control) and serotoninergic (fluoxetine as the positive control) mechanisms of action in adult zebrafish were also evaluated. No compounds were cytotoxic. Compound 2: and the epimers 3: /4: and 6: /7: showed a mechanism action by GABAA, while compound 1: showed a mechanism action by a serotonin receptor (anxiolytic activity). Molecular docking studies showed that compounds 2: and 5: have a greater affinity by the GABAA receptor when compared with diazepam, whereas 1: showed the best affinity for the 5HT2AR channel when compared to risperidone.


Asunto(s)
Alcaloides , Ansiolíticos , Antineoplásicos , Rauwolfia , Animales , Rauwolfia/química , Ansiolíticos/farmacología , Pez Cebra , Simulación del Acoplamiento Molecular , Alcaloides Indólicos/química , Diazepam/farmacología , Receptores de GABA-A , Estructura Molecular
6.
Curr Microbiol ; 80(5): 176, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37029832

RESUMEN

Antimicrobial resistance is a natural phenomenon and is becoming a huge global public health problem, since some microorganisms not respond to the treatment of several classes of antibiotics. The objective of the present study was to evaluate the antibacterial, antibiofilm, and synergistic effect of triterpene 3ß,6ß,16ß-trihydroxyilup-20(29)-ene (CLF1) against Staphylococcus aureus and Staphylococcus epidermidis strains. Bacterial susceptibility to CLF1 was evaluated by minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assay. In addition, the effect combined with antibiotics (ampicillin and tetracycline) was verified by the checkerboard method. The biofilms susceptibility was assessed by enumeration of colony-forming units (CFUs) and quantification of total biomass by crystal violet staining. The compound showed bacteriostatic and bactericidal activity against all Staphylococcal strains tested. The synergistic effect with ampicillin was observed only for S. epidermidis strains. Moreover, CLF1 significantly inhibited the biofilm formation and disrupted preformed biofilm of the all strains. Scanning electron microscopy (SEM) images showed changes in the cell morphology and structure of S. aureus ATCC 700698 biofilms (a methicillin-resistant S. aureus strain). Molecular docking simulations showed that CLF1 has a more favorable interaction energy than the antibiotic ampicillin on penicillin-binding protein (PBP) 2a of MRSA, coupled in different regions of the protein. Based on the results obtained, CLF1 proved to be a promising antimicrobial compound against Staphylococcus biofilms.


Asunto(s)
Combretum , Staphylococcus aureus Resistente a Meticilina , Triterpenos , Staphylococcus aureus , Combretum/química , Staphylococcus , Triterpenos/farmacología , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Ampicilina/farmacología , Biopelículas , Staphylococcus epidermidis , Pruebas de Sensibilidad Microbiana
7.
Biochem Biophys Res Commun ; 537: 71-77, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33387885

RESUMEN

The sanitary emergency generated by the pandemic COVID-19, instigates the search for scientific strategies to mitigate the damage caused by the disease to different sectors of society. The disease caused by the coronavirus, SARS-CoV-2, reached 216 countries/territories, where about 20 million people were reported with the infection. Of these, more than 740,000 died. In view of the situation, strategies involving the development of new antiviral molecules are extremely important. The present work evaluated, through molecular docking assays, the interactions of 4'-acetamidechalcones with enzymatic and structural targets of SARS-CoV-2 and with the host's ACE2, which is recognized by the virus, facilitating its entry into cells. Therefore, it was observed that, regarding the interactions of chalcones with Main protease (Mpro), the chalcone N-(4'[(2E)-3-(4-flurophenyl)-1-(phenyl)prop-2-en-1-one]) acetamide (PAAPF) has the potential for coupling in the same region as the natural inhibitor FJC through strong hydrogen bonding. The formation of two strong hydrogen bonds between N-(4[(2E)-3-(phenyl)-1-(phenyl)-prop-2-en-1-one]) acetamide (PAAB) and the NSP16-NSP10 heterodimer methyltransferase was also noted. N-(4[(2E)-3-(4-methoxyphenyl)-1-(phenyl)prop-2-en-1-one]) acetamide (PAAPM) and N-(4-[(2E)-3-(4-ethoxyphenyl)-1-(phenyl)prop-2-en-1-one]) acetamide (PAAPE) chalcones showed at least one strong intensity interaction of the SPIKE protein. N-(4[(2E)-3-(4-dimetilaminophenyl)-1-(phenyl)-prop-2-en-1-one]) acetamide (PAAPA) chalcone had a better affinity with ACE2, with strong hydrogen interactions. Together, our results suggest that 4'-acetamidechalcones inhibit the interaction of the virus with host cells through binding to ACE2 or SPIKE protein, probably generating a steric impediment. In addition, chalcones have an affinity for important enzymes in post-translational processes, interfering with viral replication.


Asunto(s)
Acetamidas/química , Acetamidas/farmacología , Enzima Convertidora de Angiotensina 2/química , Antivirales/farmacología , Chalcona/análogos & derivados , Proteasas 3C de Coronavirus/química , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/química , Chalcona/química , Chalcona/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , SARS-CoV-2/química , SARS-CoV-2/enzimología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo , Replicación Viral/efectos de los fármacos
8.
Biochem Biophys Res Commun ; 534: 478-484, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261884

RESUMEN

Croton zehntneri is a plant known as canelinha de cunhã, prevalent in the northeast region of Brazil. Many constituents of the vegetable have already been studied, and their pharmacological properties have been proven, but this is the first study to analyze the antinociceptive effect in adult zebrafish (ZFa) of the triterpene acetyl aleuritolic acid (AAA) isolated from the stem bark. The animals (ZFa; n = 6/group) were treated intraperitoneally (ip; 20 µL) with AAA (0.1 or 0.3 or 1.0 mg/mL) or vehicle (0.9% saline; 20 µL), and submitted to the locomotor activity test, as well as 96 h acute toxicity. Other groups (n = 6/each) received the same treatments and underwent acute nociception tests (formalin, cinnamaldehyde, glutamate, acid saline, capsaicin, and hypertonic saline). Possible neuromodulation mechanisms were evaluated. AAA (0.1 or 0.3 or 1.0 mg/mL) reduced the nociceptive behavior induced by acid saline and capsaicin, as well as inhibited corneal nociception induced by hypertonic saline, both without altering the animals' locomotor system and without toxicity. These analgesic effects of AAA were significantly (p > 0.05) similar to those of morphine, used as a positive control. The antinociceptive effect of AAA was inhibited by methylene blue, ketamine, camphor, ruthenium red, amiloride, and mefenamic acid. The antinociceptive effect of AAA on the cornea of animals was inhibited by capsazepine. Therefore, AAA showed pharmacological potential for the treatment of acute pain, and this effect is modulated by cGMP, NMDA receptors, transient receptor potential channels (TRPs), ASICs and has pharmacological potential for the treatment of corneal pain modulated by the TRPV1 channel.


Asunto(s)
Analgésicos/farmacología , Nocicepción/efectos de los fármacos , Ácidos Palmíticos/farmacología , Triterpenos/farmacología , Analgésicos/química , Animales , Córnea/efectos de los fármacos , Córnea/fisiología , Croton/química , Modelos Moleculares , Ácidos Palmíticos/química , Triterpenos/química , Pez Cebra/fisiología
9.
Microb Pathog ; 155: 104894, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33894291

RESUMEN

Staphylococcus aureus is responsible for a series of infections occurring in both human and animal hosts. S. aureus SA1199B is a strain resistant to hydrophilic fluoroquinolone due to overproduction of the NorA efflux pump that has been used as a microbial model to evaluate if a compound act as efflux pump inhibitor. Finding substances from natural or synthetic origin able to reverse resistance mechanisms like those of efflux pumps is a challenge. The use of Chalcones and their derivatives is of great chemical and pharmacological interest, as they present a simple structure and several pharmacological activities. This study aims to evaluate the antibacterial potential of 4 synthetic chalcones, as well as to evaluate their action in the modulation of Norfloxacin resistance against the strain SA1199B strain. Microdilution assays were performed for evaluation of the antimicrobial activity. For evaluation of the modulating effect on resistance to Norfloxacin or EtBr, MIC values of these compounds were determined in the absence or presence of subinhibitory concentrations used of each chalcone. MICs values of both Norfloxacin and EtBr were significantly reduced in the presence of all tested chalcones, indicating that inhibition of the active efflux of these compounds by NorA could be a possible mechanism of action of the chalcones. These results show that the compounds studied have a high potential as a NorA inhibitor, with the best modulating effect verified for the compound 3. Pharmacokinetic and toxicity predictive studies indicated a high intestinal absorption and good volume of distribution for chalcones by oral administration, activity in the central nervous system and ease to be transported between biological membranes. Emphasizing that analogs 1 and 4 were easily metabolized by CYP3A4 enzyme, constituting a pharmacological active ingredient without toxic risk due to metabolic activation. These chalcones combined with Norfloxacin could be a promise technological strategy to be applied in the treatment of infections caused by S. aureus overproducing NorA.


Asunto(s)
Chalcona , Chalconas , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Chalconas/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Norfloxacino/farmacología , Staphylococcus aureus/metabolismo
10.
Arch Microbiol ; 203(7): 4727-4736, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34052872

RESUMEN

Infectious diseases caused by multidrug-resistant microorganisms has increased in the last years. Piper species have been reported as a natural source of phytochemicals that can help in combating fungal and bacterial infections. This study had as objectives characterize the chemical composition of the essential oil from Piper caldense (EOPC), evaluate its potential antimicrobial activity, and investigate the synergistic effect with Norfloxacin against multidrug-resistant S. aureus overproducing efflux pumps, as well as, verify the EOPC ability to inhibit the Candida albicans filamentation. EOPC was extracted by hydrodistillation, and the chemical constituents were identified by gas chromatography, allowing the identification of 24 compounds (91.9%) classified as hydrocarbon sesquiterpenes (49.6%) and oxygenated sesquiterpenes (39.5%). Antimicrobial tests were performed using a 96-well plate microdilution method against C. albicans ATCC 10231, Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 standard strains, as well as against multidrug-resistant strains S. aureus SA1199B (overexpressing norA gene), S. aureus K2068 (overexpressing mepA gene) and S. aureus K4100 (overexpressing qacC gene). The oil showed activity against C. albicans ATCC 10231 (≥ 512 µg/mL) and was able to inhibit hyphae formation, an important mechanism of virulence of C. albicans. On the other hand, EOPC was inactive against all bacterial strains tested (≤ 1,024 µg mL). However, when combined with Norfloxacin at subinhibitory concentration EOPC reduced the Norfloxacin and Ethidium bromide MIC values against S. aureus strains SA1199B, K2068 and K4100. These results indicate that EOPC is a source of phytochemicals acting as NorA, MepA and QacC inhibitors.


Asunto(s)
Proteínas Bacterianas , Staphylococcus aureus Resistente a Meticilina , Norfloxacino , Aceites Volátiles , Piper , Staphylococcus aureus , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Norfloxacino/química , Norfloxacino/farmacología , Aceites Volátiles/farmacología , Piper/química , Piper/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética
11.
Arch Microbiol ; 204(1): 63, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34940944

RESUMEN

The Staphylococcus aureus bacteria is a Gram-positive, immobile, non-spore bacterium, with catalase and positive coagulase, among other characteristics. It is responsible for important infections caused in the population and for hospital infections. Because of that many strategies are being developed to combat the resistance of microorganisms to drugs, in recent times, chalcones have been studied for this purpose. Chalcones are found in parts of plants and can be found, for example, in the roots, leaves, bark, among others, but are mainly found as petal pigments, they are a class of compounds considered an exceptional model due to chemical simplicity and a wide variety of biological activities. This study aimed to evaluate the ability of chalcone (E)-3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one to reverse the efflux pump resistance, present in the bacteria S. aureus 1199B and S. aureus K2068. The synthetic chalcone (E)-3-(2,4-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one was able to synergistically modulate the antibiotic Ciprofloxacino and Ethidium Bromide against the bacterial strain S. aureus K2068, and with the antibiotic Norfloxacino against the strain 1199B. Thus, it is suggested that this chalcone may be acting by inhibiting the efflux pump mechanism of these bactéria. The theoretical physicochemical and pharmacokinetic properties of chalcone showed that the chalocne did not present a severe risk of toxicity, such as genetic mutation or cardiotoxicity. Molecular docking showed that the chalcone could act as a competitive inhibitor of the MepA efflux pump, as at hinders the binding of other substrates, such as EtBr.


Asunto(s)
Chalcona , Chalconas , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chalcona/farmacología , Chalconas/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Staphylococcus aureus/metabolismo
12.
Epilepsy Behav ; 117: 107881, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33711684

RESUMEN

In the treatment of anxiety and seizures, drugs of the benzodiazepine (BZD) class are used, which act on the Central Nervous System (CNS) through the neurotransmitter gamma-aminobutyric acid (GABA). Flavonoids modulate GABAA receptors. The aim of this study was to evaluate the anxiolytic and anticonvulsant effects of synthetic chalcones and their mechanisms of action via the GABAergic system, using adult zebrafish (ZFa). The animals were treated with chalcones (4.0 or 20 or 40 mg/kg; 20 µL; i.p) and submitted to the open field and 96 h toxicity test. Chalcones that cause locomotor alteration were evaluated in the light and dark anxiolytic test. The same doses of chalcones were evaluated in the anticonvulsant test. The lowest effective dose was chosen to assess the possible involvement in the GABAA receptor by blocking the flumazenil (fmz) antagonist. No chalcone was toxic and altered ZFa's locomotion. All chalcones had anxiolytic and anticonvulsant effects, mainly chalcones 1, where all doses showed effects in both tests. These effects were blocked by Fmz (antagonist GABAA), where it shows evidence of the performance of these activities of the GABA system. Therefore, this study demonstrated in relation to structure-activity, that the position of the substituents is important in the intensity of activities and that the absence of toxicity and the action of these compounds in the CNS, shows the pharmacological potential of these molecules, and, therefore, the insights are designed for the development of new drugs.


Asunto(s)
Ansiolíticos , Chalconas , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Conducta Animal , Chalconas/uso terapéutico , Receptores de GABA-A , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Pez Cebra
13.
Curr Microbiol ; 78(5): 1926-1938, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33782740

RESUMEN

A large number of infections are caused by Gram-positive and Gram-negative multi-resistant bacteria worldwide, adding up to a figure of around 700,000 deaths per year. The indiscriminate uses of antibiotics, as well as their misuse, resulted in the selection of bacteria resistant to known antibiotics, for which it has little or no treatment. In this way, the strategies to combat the resistance of microorganisms are extremely important and, essential oils of Croton species have been extensively studied for this purpose. The aim of this study was to carry the evaluation of antibacterial, antibiofilm, antioxidant activities, and spectroscopic investigation of essential oil from Croton piauhiensis (EOCp). The EOCp exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria with required MICs ranging from 0.15 to 5% (v/v). In addition, the MBC of the EOCp for Staphylococcus aureus ATCC 25923 and ATCC 700698, were 0.15 and 1.25%, respectively. Moreover, the EOCp significantly reduced significantly the biofilm production and the number of viable cells from the biofilm of all bacterial strains tested. The antioxidant potential of the EOCp showed EC50 values ranging from 171.21 to 4623.83 µg/mL. The EOCp caused hemolysis (>45%) at the higher concentrations tested (1.25 to 5%), and minor hemolysis (17.6%) at a concentration of 0.07%. In addition, docking studies indicated D-limonene as a phytochemical with potential for antimicrobial activity. This study indicated that the EOCp may be a potential agent against infections caused by bacterial biofilms, and act as a protective agent against ROS and oxidative stress.


Asunto(s)
Antiinfecciosos , Croton , Aceites Volátiles , Antibacterianos/farmacología , Antioxidantes/farmacología , Biopelículas , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología
14.
3 Biotech ; 14(5): 135, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38665880

RESUMEN

Extracts from Mangifera indica leaves and its main component, mangiferin, have proven antidiabetic activity. In this study, mangiferin and its natural derivatives Homomangiferin (HMF), Isomangiferin (IMF), Neomangiferin (NMF), Glucomangiferin (GMF), Mangiferin 6'-gallate (MFG), and Norathyriol (NRT) were compared regarding their action on Diabetes mellitus (DM), employing docking and molecular dynamics (MD) simulations to analyze interactions with the aldose reductase enzyme, the precursor to the conversion of glucose into sorbitol. Notably, HMF showed significant affinity to residues in the active site of the enzyme, including Trp 79, His 110, Trp 111, Phe 122, and Phe 300, with an energy of - 7.2 kcal/mol, observed in the molecular docking simulations. MD reinforced the formation of stable complexes for HMF and MFG with the aldose reductase, with interaction potential energies (IPE) in the order of - 300.812 ± 52 kJ/mol and - 304.812 ± 52 kJ/mol, respectively. The drug-likeness assessment, by multiparameter optimization (MPO), highlighted that HMF and IMF have similarities with polyphenols and glycosidic flavonoids recently patented as antidiabetics, revealing that high polarity (TPSA > 180 Å2) is a favorable property for subcutaneous administration, especially because of the gradual passive cell permeability values in biological tissues, with Papp values estimated at < 10 × 10-6 cm/s. These compounds are metabolically stable against metabolic enzymes, resulting in a low toxic incidence by metabolic activation, corroborating with a lethal dose (LD50) greater than 2000 mg/kg. In this way, HMF showed a systematic alignment between predicted pharmacokinetics and pharmacodynamics, characterizing it as the most favorable substance for inhibiting aldose reductase. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03978-9.

15.
Future Med Chem ; 16(1): 11-26, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38084595

RESUMEN

Aim: Our objective was to investigate the trypanocidal effect of the chalcone (2E,4E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-5-phenylpenta-2,4-dien-1-one (CPNC). Material & methods: Cytotoxicity toward LLC-MK2 host cells was assessed by MTT assay, and the effect on Trypanosoma cruzi life forms (epimastigotes, trypomastigotes and amastigotes) was evaluated by counting. Flow cytometry analysis was performed to evaluate the possible mechanisms of action. Finally, molecular docking simulations were performed to evaluate interactions between CPNC and T. cruzi enzymes. Results: CPNC showed activity against epimastigote, trypomastigote and amastigote life forms, induced membrane damage, increased cytoplasmic reactive oxygen species and mitochondrial dysfunction on T. cruzi. Regarding molecular docking, CPNC interacted with both trypanothione reductase and TcCr enzymes. Conclusion: CPNC presented a trypanocidal effect, and its effect is related to oxidative stress, mitochondrial impairment and necrosis.


Asunto(s)
Enfermedad de Chagas , Chalconas , Tripanocidas , Trypanosoma cruzi , Humanos , Chalconas/farmacología , Simulación del Acoplamiento Molecular , Enfermedad de Chagas/tratamiento farmacológico , Especies Reactivas de Oxígeno , Tripanocidas/farmacología
16.
Mol Biotechnol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834896

RESUMEN

Parkinson's disease (PD) is a debilitating condition that can cause locomotor problems in affected patients, such as tremors and body rigidity. PD therapy often includes the use of monoamine oxidase B (MAOB) inhibitors, particularly phenylhalogen compounds and coumarin-based semi-synthetic compounds. The objective of this study was to analyze the structural, pharmacokinetic, and pharmacodynamic profile of a series of Triazolo Thiadiazepine-fused Coumarin Derivatives (TDCDs) against MAOB, in comparison with the inhibitor safinamide. To achieve this goal, we utilized structure-based virtual screening techniques, including target prediction and absorption, distribution, metabolism, and excretion (ADME) prediction based on multi-parameter optimization (MPO) topological analysis, as well as ligand-based virtual screening techniques, such as docking and molecular dynamics. The findings indicate that the TDCDs exhibit structural similarity to other bioactive compounds containing coumarin and MAOB-binding azoles, which are present in the ChEMBL database. The topological analyses suggest that TDCD3 has the best ADME profile, particularly due to the alignment between low lipophilicity and high polarity. The coumarin and triazole portions make a strong contribution to this profile, resulting in a permeability with Papp estimated at 2.15 × 10-5 cm/s, indicating high cell viability. The substance is predicted to be metabolically stable. It is important to note that this is an objective evaluation based on the available data. Molecular docking simulations showed that the ligand has an affinity energy of - 8.075 kcal/mol with MAOB and interacts with biological substrate residues such as Pro102 and Phe103. The results suggest that the compound has a safe profile in relation to the MAOB model, making it a promising active ingredient for the treatment of PD.

17.
J Biomol Struct Dyn ; 42(4): 1670-1691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37222682

RESUMEN

Chalcones have an open chain flavonoid structure that can be obtained from natural sources or by synthesis and are widely distributed in fruits, vegetables, and tea. They have a simple and easy to handle structure due to the α-ß-unsaturated bridge responsible for most biological activities. The facility to synthesize chalcones combined with its efficient in combating serious bacterial infections make these compounds important agents in the fight against microorganisms. In this work, the chalcone (E)-1-(4-aminophenyl)-3-(4-nitrophenyl)prop-2-en-1-one (HDZPNB) was characterized by spectroscopy and electronic methods. In addition, microbiological tests were performed to investigate the modulator potential and efflux pump inhibition on S. aureus multi-resistant strains. The modulating effect of HDZPNB chalcone in association with the antibiotic norfloxacin, on the resistance of the S. aureus 1199 strain, resulted in increase the MIC. In addition, when HDZPNB was associated with ethidium bromide (EB), it caused an increase in the MIC value, thus not inhibiting the efflux pump. For the strain of S. aureus 1199B, carrying the NorA pump, the HDZPNB associated with norfloxacin showed no modulatory, and when the chalcone was used in association with EB, it had no inhibitory effect on the efflux pump. For the tested strain of S. aureus K2068, which carries the MepA pump, it can be observed that the chalcone together the antibiotic resulted in an increase the MIC. On the other hand, when chalcone was used in association with EB, it caused a decrease in bromide MIC, equal to the reduction caused by standard inhibitors. Thus, these results indicate that the HDZPNB could also act as an inhibitor of the S. aureus gene overexpressing pump MepA. The molecular docking reveals that chalcone has a good binding energies -7.9 for HDZPNB/MepA complexes, molecular dynamics simulations showed that Chalcone/MetA complexes showed good stability of the structure in an aqueous solution, and ADMET study showed that the chalcone has a good oral bioavailability, high passive permeability, low risk of efflux, low clearance rate and low toxic risk by ingestion. The microbiological tests show that the chalcone can be used as a possible inhibitor of the Mep A efflux pump.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Chalcona , Chalconas , Nitrofenoles , Antibacterianos/química , Staphylococcus aureus , Norfloxacino/farmacología , Norfloxacino/metabolismo , Simulación del Acoplamiento Molecular , Chalcona/farmacología , Chalconas/farmacología , Pruebas de Sensibilidad Microbiana , Etidio/metabolismo , Proteínas Bacterianas/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos
18.
Artículo en Inglés | MEDLINE | ID: mdl-38722342

RESUMEN

This study aims to evaluate the antitrypanosomiasis activity of a synthetic dichloro-substituted aminochalcone via in vitro assays against infected cell cultures, as well as a theoretical characterization of pharmacokinetics and pharmacodynamics against the protein targets of the evolutionary cycle of T. cruzi. The in vitro evaluation of parasite proliferation inhibition was performed via cytotoxicity analysis on mammalian host cells, effect on epimastigote and trypomastigote forms, and cell death analysis, while computer simulations characterized the electronic structure of (2E)-1-(4-aminophenyl)-3-(2,4-dichlorophenyl)prop-2-en-1-one (DCl), the mechanism of action against the proteins of the evolutionary cycle of T. cruzi: Cruzain, Trypanothione reductase, TcGAPDH, and CYP51 by molecular docking and dynamics and predictive pharmacokinetics by MPO-based ADMET. The in vitro tests showed that the DCl LC50 in order of 178.9 ± 23.9 was similar to the BZN, evidencing the effectiveness of chalcone against Trypomastigotes. Molecular docking and dynamics simulations suggest that DCl acts on the active site of the CYP51 receptor, with hydrogen interactions that showed a high degree of occupation, establishing a stable complex with the target. MPO analysis and ADMET prediction tests suggest that the compound presents an alignment between permeability and hepatic clearance, although it presents low metabolic stability. Chalcone showed stable pharmacodynamics against the CYP51 target, but can form reactive metabolites from N-conjugation and C = C epoxidation, as an indication of controlled oral dose, although the estimated LD50 rate > 500 mg/kg is a indicative of low incidence of lethality by ingestion, constituting a promising therapeutic strategy.

19.
Artículo en Inglés | MEDLINE | ID: mdl-37957896

RESUMEN

BACKGROUND: Chagas disease kills around 10,000 people yearly, primarily in Latin America, where it is prevalent. Current treatment has limited chronic effectiveness, is unsafe, and has substantial side effects. As a result, the use of oxadiazole derivatives and similar heterocyclic compounds as bioisosteres are well known, and they are prospective candidates in the hunt for novel anti-Trypanosoma cruzi chemicals. Recent research has revealed that the cysteine protease cruzain from T. cruzi is a validated target for disease treatment. OBJECTIVE: Thus, using a molecular dynamics simulation, the current study attempted to determine if a significant interaction occurred between the enzyme cruzain and its ligand. RESULTS: Interactions with the catalytic site and other critical locations were observed. Also, the RMSD values suggested that the molecule under research had stable interactions with its target. CONCLUSION: Finally, the findings indicate that the investigated molecule 2b can interfere enzymatic activity of cruzain, indicating that it might be a promising antichagasic drug.

20.
J Biomol Struct Dyn ; 41(4): 1206-1216, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34907850

RESUMEN

Ouratea fieldingiana, popularly known as batiputá, is a tree species easily found in the coastal part of northeastern Brazil. Its leaves are rich in biflavonoids, its major compound being amentoflavone. Biflavonoids are well studied due to their high antioxidant capacity. Alzheimer's disease (AD) is a disease characterized by the progressive loss of neurons. Currently, the pharmacological treatment of AD has four drugs: donepezil, galantamine, rivastigmine and memantine. Where these drugs, with the exception of memantine, are inhibitors of acetylcholinesterase, thus inhibiting the enzyme that destroys acetylcholine, thus increasing the availability of this neurotransmitter. This article aims to determine in vitro and in silico the antioxidant and anticholinesterase action of amentoflavone isolated from the leaves of Ouratea fieldingiana. The antioxidant capacity of amentoflavone was evaluated using the DPPH* free radical scavenging method, with an IC50 of 5.73 ± 0.08 µg/mL. The antiradical properties of the molecule were also studied in silico through several HAT, SET-PT and SPLET mechanisms via DFT M06-2X/6-311++G(d,p). It was found that in the hydrogen atom transfer mechanism (HAT) the best trend was obtained as an anti-radical mechanism. Amentoflavone has the ability to inhibit acetylcholinesterase when tested in vitro, having an IC50 of 8.68 ± 0.73 µg/mL, corroborating its effect in the in silico test, presenting four strong covalent hydrogen bonds for having a bond length up to 2.5 Å. Thus, amentoflavone is an important target for further testing against Alzheimer's disease. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enfermedad de Alzheimer , Biflavonoides , Ochnaceae , Inhibidores de la Colinesterasa/farmacología , Antioxidantes/química , Biflavonoides/farmacología , Biflavonoides/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Acetilcolinesterasa , Memantina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA