Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Chim Slov ; 63(3): 535-43, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27640380

RESUMEN

The influence of ZnO nanoparticles on the thermal degradation behavior of poly(methyl methacrylate) (PMMA) was tested using thermoanalytical techniques. The studied materials were investigated using TG, DTA, EGA, XRD, SEM and TEM. The ZnO nanoparticles were synthesized via precipitation by adding LiOH into Zn2+ water/ethylene glycol solutions. The ZnO-PMMA nanocomposites were prepared by adding the appropriate amount of ZnO into MMA and subsequent MMA radical polymerization. According to the experimental results and model-free isoconversional activation energy calculations, the addition of ZnO into PMMA played a double role. The ZnO concentrations up to 0.15% stabilized the composite by shifting the degradation interval toward higher temperatures and increasing the apparent activation energy relative to pure PMMA. At higher concentrations, the catalytic effect of ZnO started to prevail and was reflected in the lower temperature intervals of intense PMMA degradation and lower apparent activation energy. The addition of ZnO generally did not change the nature of the PMMA decomposition process.

2.
Acta Chim Slov ; 61(3): 439-46, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25286198

RESUMEN

The title compound, [Zr(6)(OH)(4)O(4)(N(2)H(3)COO)(12)] · 14H(2)O, was prepared with a novel multi-step synthetic pathway. The structure contains a Zr(6)(µ(3)-OH)(4)(µ(3)-O(4))(12+) core on which twelve hydrazine carboxylate anions are bound to form neutral coordination molecules. The coordination mode of carboxylate ligand is exclusively N,O-bidentate chelating, which is observed for the first time in this class of compounds. The title compound is also the first example of isolated Zr(IV) oxo clusters with cubic symmetry. The structure is stabilized with an extensive hydrogen bond network between coordination and water molecules, and amongst the solvent water molecules themselves. Thermogravimetric studies have shown that the prepared [Zr(6)(OH)(4)O(4)(N(2)H(3)COO)(12)] · (14)H(2)O decomposed in several consecutive steps characterized by evolution of H(2)O, CO, CO(2), N(2) and H(2), finally yielding ZrO(2). The decomposition mechanism is rather complex and includes the formation of a series of amorphous intermediates.

3.
Materials (Basel) ; 17(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998151

RESUMEN

This work focuses in-depth on the quantitative relationships between primary first-order microstructural parameters (i.e., volume fractions of various phases and particle size distribution) with the more complex second-order topological features (i.e., connectivity of phases, three-phase boundary length (TPBL), interfacial areas, or tortuosity). As a suitable model material, a cermet nickel/samaria-doped ceria (Ni-SDC) is used as an anode in a solid oxide fuel cell (SOFC). A microstructure description of nano-sized Ni-SDC cermets, fabricated at various sintering conditions from 1100 °C to 1400 °C, was performed using FIB-SEM nanotomography. The samples were serially sectioned employing a fully automated slicing procedure with active drift correction algorithms and an auto-focusing routine to obtain a series of low-loss BSE images. Advanced image processing algorithms were developed and applied directly to image data volume. The microstructural-topological relationships are crucial for the microstructure optimisation and, thus, the improvement of the corresponding electrode performance. Since all grains of individual phases (Ni, SDC, or pores) did not percolate, special attention was given to the visualisation of the so-called active TPBL. Based on the determined microstructure characteristics of the prepared Ni-SDC cermets, including simulations of gas flow and pressure drop, thermal treatment at 1200 °C was recognised as the most appropriate sintering temperature.

4.
Polymers (Basel) ; 16(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274114

RESUMEN

In the 19th century, the weighting of silk with metal salts, such as tin, was a common practice to enhance certain properties of silk fabrics and compensate for the weight loss incurred during the degumming process. This technique induces both physical and chemical modifications to the fibres, contributing to their long-term degradation, which requires thorough investigation. This study aims to examine the structural changes in silk fibres caused by the accumulation of metal salts from the tin-weighting process, using mock-up samples prepared through successive loading with weighting agents using a traditional tin-phosphate treatment method. Unweighted and tin-weighted silk samples were compared using scanning electron (SEM) micrographs, which presented the dispersed nanoparticles on the fibres, while through energy-dispersive X-ray spectroscopy (EDS) elemental mapping, the presence and uniform distribution of the weighting agents were confirmed. Fourier-transform infrared spectroscopy (FTIR) analysis revealed structural changes in tin-weighted silk samples compared to untreated ones, including shifts in amide bands, altered water/hydroxyl and skeletal stretching regions, and increased skeletal band intensities suggesting modifications in hydrogen bonding, ß-sheet content, and structural disorder without significantly impacting the overall crystallinity index. X-ray diffraction (XRD) analysis of both pristine and tin-weighted silk samples revealed significant alterations, predominantly in the amorphous regions of the silk upon weighting. These structural changes were further examined using small-angle X-ray scattering (SAXS) and small- and wide-angle X-ray scattering (SWAXS), which provided detailed insights into modifications occurring at the nanometre scale. The analyses suggested disruptions in ß-sheet crystals and intermolecular packing, especially in the amorphous regions, with increasing amounts of tin-weighting. Contact angle analysis (CA) revealed that the tin-phosphate-weighting process significantly impacted silk surface properties, transforming it from moderately hydrophobic to highly hydrophilic. These changes indicate that the incorporation of tin-phosphate nanoparticles on and within silk fibres could restrict the flexibility of polymer chains, impacting the physical properties and potentially the degradation behaviour of silk textiles. By studying these structural changes, we aim to deepen our understanding of how tin-weighting impacts silk fibre structure, contributing valuable insights into the longevity, conservation, and preservation strategies of silk textiles in the context of cultural heritage.

5.
Acta Chim Slov ; 60(4): 797-806, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24362983

RESUMEN

ZnO nanoparticles were prepared in a typical single-step experimental procedure, in different water-to-ethylene glycol volume ratios at a moderate temperature. Morphological studies performed by SEM and TEM have revealed two different types of nanosized particles: hexagonal facetted nanoparticles and spherical ones. The obtained ZnO nanoparticles were further coated with the coupling reagent tetraethyl orthosilicate (TEOS), in situ and ex situ. The thickness of the silica layer around the ZnO nanoparticles varied between 4 and 18 nm. The coated as well as the bare ZnO nanoparticles were thoroughly characterized by different characterization methods. They were also incorporated into poly-methylmethacrylate (PMMA). The obtained PMMA/ZnO nanocomposites showed relatively high transmittance for visible light but also relatively high absorbance in the UV region between 250-370 nm.


Asunto(s)
Cafeína/química , Nanopartículas del Metal , Polimetil Metacrilato/química , Silanos/química , Espectrofotometría Ultravioleta/instrumentación , Óxido de Zinc/química
6.
Sci Total Environ ; 818: 151816, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34813818

RESUMEN

Microplastics are very common contaminants in the environment. Despite increasing efforts to assess the effects of microplastics on soil organisms, there remains a lack of knowledge on how organisms respond to diverse types of microplastics after different exposure durations. In the present study, we investigated the immune response of the terrestrial crustacean Porcellio scaber exposed to the two most common microplastic particles in the environment: polyester fibres and tyre particles. We also tested two natural particles: wood dust and silica powder, with all treatments performed at 1.5% w/w. The response of P. scaber was evaluated at the level of the immune system, and also the biochemical, organism and population level, after different exposure durations (1, 2, 4, 7, 14, 21 days). These data reveal dynamic changes in the levels of some immune parameters shortly after exposure, with a gradual return to control values. The total number of haemocytes was significantly decreased after 4 days of exposure to tyre particles, while the proportion of different haemocyte types in the haemolymph was altered shortly after exposure to both polyester fibres and tyre particles. Moreover, 7 days of exposure to tyre particles resulted in increased superoxide dismutase activity in the haemolymph, while metabolic activity in whole woodlice (measured as electron transport system activity) was increased after exposure for 7, 14 and 21 days. In contrast, the natural particles did not elicit any significant changes in the measured parameters. Survival and feeding of P. scaber were not altered by exposure to the microplastics and natural particles in soil. Overall, this study defines a time-dependent transient immune response of P. scaber, which indicates that immune parameters represent sensitive biomarkers of exposure to microplastics. We discuss the importance of using natural particles in studies of microplastics exposure and their effects.


Asunto(s)
Isópodos , Contaminantes Químicos del Agua , Animales , Inmunidad , Microplásticos/toxicidad , Plásticos/toxicidad , Suelo/química , Contaminantes Químicos del Agua/toxicidad
7.
Microplast nanoplast ; 2(1): 1, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35005629

RESUMEN

The COVID-19 pandemic has increased the use of disposable plastics, including medical masks, which have become a necessity in our daily lives. As these are often improperly disposed of, they represent an important potential source of microplastics in the environment. We prepared microplastics from polypropylene medical masks and characterised their size, shape, organic chemical leaching, and acute toxicity to the planktonic crustacean Daphnia magna. The three layers of the masks were separately milled and characterised. Each of the inner frontal, middle filtering, and outer layers yielded different types of microplastics: fibres were obtained from the inner and outer layer, but irregular fragments from the middle layer. The shape of the obtained microplastics differed from the initial fibrous structure of the intact medical mask layers, which indicates that the material is deformed during cryo-milling. The chemical compositions of plastics-associated chemicals also varied between the different layers. Typically, the inner layer contained more chemicals related to antimicrobial function and flavouring. The other two layers also contained antioxidants and their degradation products, plasticisers, cross-linking agents, antistatic agents, lubricants, and non-ionic surfactants. An acute study with D. magna showed that these microplastics do not cause immobility but do physically interact with the daphnids. Further long-term studies with these microplastics are needed using a suite of test organisms. Indeed, studies with other polypropylene microplastics have shown numerous adverse effects on other organisms at concentrations that have already been reported in the environment. Further efforts should be made to investigate the environmental hazards of polypropylene microplastics from medical masks and how to handle this new source of environmental burden. PLEASE CHECK THE SI WORD DOCUMENT THE AUTHORS ARE NOT LISTED THERE I CANNOT EDIT THAT FILE PLEASE ADD THE AUTHORS SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s43591-021-00020-0.

8.
Sci Total Environ ; 773: 145576, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33940734

RESUMEN

Microplastics in the environment occur in different sizes and shapes and are made of various polymers. Therefore, they also considerably differ in their properties and ecotoxicity. However, the majority of microplastics research uses pre-made spherical microplastics, which practically do not exist in the environment. Our work focused on a comprehensive study of six different types of microplastic that were prepared to simulate common microplastics found in the environment. All types of microplastics where chemically and physically characterized using Fourier-transform infrared spectroscopy, thermal analysis, field-emission scanning electron microscopy, optical microscopy and laser diffraction analysis. The specific surface area was determined using the BET method. Furthermore, effects of microplastics and microplastic leachates on a common duckweed (Lemna minor) were evaluated. All tested microplastics did not affect specific growth rate and chlorophyll a content in duckweed, while microplastics with a rough surface and sharp edges caused a significant reduction of duckweed root length. Microplastics made of Bakelite also showed an intensive leaching, which increased their ecotoxicity potential. Natural particles used as a control did not have any negative effect on duckweed. Overall, microplastic particles have significantly different ecotoxicity profiles depending on their physico-chemical properties. Therefore, the testing of environmentally relevant particles and their proper characterization, as well as the testing of microplastic leaching properties, is crucial for understanding of microplastics ecotoxicological potential.


Asunto(s)
Araceae , Contaminantes Químicos del Agua , Clorofila A , Microplásticos , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
9.
Acta Chim Slov ; 57(1): 129-35, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24061664

RESUMEN

This paper deals with a standard classification procedure for readily combustible solids and their assignment to the relevant packing groups according to international air-cargo legislation and regulations. The current International Air Transport Association and United Nations Orange Book regulations were used on chemically similar substances: hexamethylenetetramine and Dancook ignition briquettes, which are both assigned into the same Packing Group III. To critically evaluate the degree of hazard both chemicals present, a standard burning test rate as well as thermogravimetry, differential scanning calorimetry and evolved gas analysis measurements were performed. It was shown that relatively small changes in the chemical composition of the material may have essential influence on the package group determination. Taking into account all the facts collected in the experimental work, it was concluded that ignition briquettes will undergo spontaneous combustion if exposed to elevated temperatures and, from this point of view, represent higher risk than hexamethylenetetramine during air transportation. Therefore, ignition briquettes should be classified into Packing Group II.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA