Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Sci Technol ; 48(10): 5709-17, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24758200

RESUMEN

Many studies have focused on natural stress factors that shape the spatial and temporal distribution of calanoid copepods, but bioassays have shown that copepods are also sensitive to a broad range of contaminants. Although both anthropogenic and natural stress factors are obviously at play in natural copepod communities, most studies consider only one or the other. In the present investigation, we modeled the combined impact of both anthropogenic and natural stress factors on copepod populations. The model was applied to estimate Eurytemora affinis densities in the contaminated Scheldt estuary and the relatively uncontaminated Darß-Zingst estuary in relation to temperature, salinity, chlorophyll a, and sediment concentrations of cadmium, copper, and zinc. The results indicated that temperature was largely responsible for seasonal fluctuations of E. affinis densities. Our model results further suggested that exposure to zinc and copper was largely responsible for the reduced population densities in the contaminated estuary. The model provides a consistent framework for integrating and quantifying the impacts of multiple anthropogenic and natural stress factors on copepod populations. It facilitates the extrapolation of laboratory experiments to ecologically relevant end points pertaining to population viability.


Asunto(s)
Copépodos/fisiología , Monitoreo del Ambiente , Estuarios , Modelos Teóricos , Estrés Fisiológico , Animales , Bioensayo , Cadmio/toxicidad , Copépodos/efectos de los fármacos , Cobre/toxicidad , Actividades Humanas , Humanos , Densidad de Población , Reproducción/efectos de los fármacos , Salinidad , Estrés Fisiológico/efectos de los fármacos , Temperatura , Zinc/toxicidad
2.
Sci Total Environ ; 860: 160402, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36427722

RESUMEN

We studied how changing human impacts affected phytoplankton dynamics in the freshwater and brackish tidal reaches of the Zeeschelde estuary (Belgium) between 2002 and 2018. Until the early 2000s, the Zeeschelde was heavily polluted due to high wastewater discharges. By 2008, water quality had improved, resulting in lower nutrient concentrations and higher oxygen levels. Since 2009, however, increased dredging activities resulted in altered hydrodynamics and increased suspended sediment concentration. The combined effects of these environmental changes were reflected in three marked transitions in phytoplankton community composition. Assemblages were dominated by Thalassiosirales and green algae (especially Scenedesmaceae) until 2003. The period 2003-2011 was characterized by the wax and wane of the centric diatoms Actinocyclus and Aulacoseira, while in the period 2012-2018 Thalassiosirales and Cyanobacteria became dominant, the latter mainly imported from the tributaries. Phytoplankton biomass increased sharply in 2003, after which there was a gradual decline until 2018. By 2018, the timing of the growing season had advanced with about one month compared to the start of the study, probably as a consequence of climate warming and intensified zooplankton grazing pressure. Our study shows that de-eutrophication (during the 2000s) and morphological interventions in the estuary (in the 2010s) were dominant drivers of phytoplankton dynamics but that the main shifts in community composition were triggered by extreme weather events, suggesting significant resistance of autochthonous communities to gradual changes in the environment.


Asunto(s)
Diatomeas , Clima Extremo , Humanos , Fitoplancton , Estuarios , Bélgica , Hidrodinámica , Biomasa , Eutrofización
3.
Science ; 377(6605): 523-527, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35901146

RESUMEN

Much uncertainty exists about the vulnerability of valuable tidal marsh ecosystems to relative sea level rise. Previous assessments of resilience to sea level rise, to which marshes can adjust by sediment accretion and elevation gain, revealed contrasting results, depending on contemporary or Holocene geological data. By analyzing globally distributed contemporary data, we found that marsh sediment accretion increases in parity with sea level rise, seemingly confirming previously claimed marsh resilience. However, subsidence of the substrate shows a nonlinear increase with accretion. As a result, marsh elevation gain is constrained in relation to sea level rise, and deficits emerge that are consistent with Holocene observations of tidal marsh vulnerability.


Asunto(s)
Elevación del Nivel del Mar , Humedales , Incertidumbre
4.
PLoS One ; 8(8): e70381, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950927

RESUMEN

Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary.


Asunto(s)
Estuarios , Metales/análisis , Oligoelementos/análisis , Humedales , Bélgica , Seguimiento de Parámetros Ecológicos/métodos , Filtración , Geografía , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Metales/metabolismo , Países Bajos , Estaciones del Año , Oligoelementos/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA