Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(23): 29621-29633, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38806169

RESUMEN

The ongoing challenge of viral transmission, exemplified by the Covid pandemic and recurrent viral outbreaks, necessitates the exploration of sustainable antiviral solutions. This study investigates the underexplored antiviral potential of wooden surfaces. We evaluated the antiviral efficacy of various wood types, including coniferous and deciduous trees, against enveloped coronaviruses and nonenveloped enteroviruses like coxsackie virus A9. Our findings revealed excellent antiviral activity manifesting already within 10 to 15 min in Scots pine and Norway spruce, particularly against enveloped viruses. In contrast, other hardwoods displayed varied efficacy, with oak showing effectiveness against the enterovirus. This antiviral activity was consistently observed across a spectrum of humidity levels (20 to 90 RH%), while the antiviral efficacy manifested itself more rapidly at 37 °C vs 21 °C. Key to our findings is the chemical composition of these woods. Resin acids and terpenes were prevalent in pine and spruce, correlating with their antiviral performance, while oak's high phenolic content mirrored its efficacy against enterovirus. The pine surface absorbed a higher fraction of the coronavirus in contrast to oak, whereas enteroviruses were not absorbed on those surfaces. Thermal treatment of wood or mixing wood with plastic, such as in wood-plastic composites, strongly compromised the antiviral functionality of wood materials. This study highlights the role of bioactive chemicals in the antiviral action of wood and opens new avenues for employing wood surfaces as a natural and sustainable barrier against viral transmissions.


Asunto(s)
Antivirales , Enterovirus , Madera , Madera/química , Antivirales/química , Antivirales/farmacología , Enterovirus/efectos de los fármacos , Coronavirus/efectos de los fármacos , Inactivación de Virus/efectos de los fármacos , Propiedades de Superficie , Quercus/química , Humanos , Pinus/química , Picea/química , Árboles/virología
2.
Microbiol Spectr ; 12(2): e0300823, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38226803

RESUMEN

Viruses may persist on solid surfaces for long periods, which may contribute to indirect transmission. Thus, it is imperative to develop functionalized surfaces that will lower the infectious viral load in everyday life. Here, we have tested a plastic surface functionalized with tall oil rosin against the seasonal human coronavirus OC43 as well as severe acute respiratory syndrome coronavirus 2. All tested non-functionalized plastic surfaces showed virus persistence up to 48 h. In contrast, the functionalized plastic showed good antiviral action already within 15 min of contact and excellent efficacy after 30 min over 90% humidity. Excellent antiviral effects were also observed at lower humidities of 20% and 40%. Despite the hydrophilic nature of the functionalized plastic, viruses did not adhere strongly to it. According to helium ion microscopy, viruses appeared flatter on the rosin-functionalized surface, but after flushing away from the rosin-functionalized surface, they showed no apparent structural changes when imaged by transmission electron microscopy of cryogenic or negatively stained specimens or by atomic force microscopy. Flushed viruses were able to bind to their host cell surface and enter endosomes, suggesting that the fusion with the endosomal membrane was halted. The eluted rosin from the functionalized surface demonstrated its ability to inactivate viruses, indicating that the antiviral efficacy relied on the active leaching of the antiviral substances, which acted on the viruses coming into contact. The rosin-functionalized plastic thus serves as a promising candidate as an antiviral surface for enveloped viruses.IMPORTANCEDuring seasonal and viral outbreaks, the implementation of antiviral plastics can serve as a proactive strategy to limit the spread of viruses from contaminated surfaces, complementing existing hygiene practices. In this study, we show the efficacy of a rosin-functionalized plastic surface that kills the viral infectivity of human coronaviruses within 15 min of contact time, irrespective of the humidity levels. In contrast, non-functionalized plastic surfaces retain viral infectivity for an extended period of up to 48 h. The transient attachment on the surface or the leached active components do not cause major structural changes in the virus or prevent receptor binding; instead, they effectively block viral infection at the endosomal stage.


Asunto(s)
Virus , Humanos , SARS-CoV-2 , Interacciones Hidrofóbicas e Hidrofílicas , Antivirales
3.
Res Sq ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38978565

RESUMEN

Coxsackievirus B1 (CVB1) is a common cause of acute and chronic myocarditis, dilated cardiomyopathy and aseptic meningitis. However, no CVB-vaccines are available for human use. In this study, we investigated the immunogenicity of virus-like particle (VLP) and inactivated whole-virus vaccines for CVB1 when administrated to mice via either subcutaneous or intranasal routes formulated with and without commercial and experimental adjuvants. Here, the potential of utilizing epigallocatechin-3-gallate (EGCG) as a mucosal adjuvant synergistically with its ability to inactivate the virus were investigated. EGCG had promising adjuvant properties for CVB1-VLP when administered via the parenteral route but limited efficacy via intranasal administration. However, intranasal administration of the formalin-inactivated virus induced high CVB1-specific humoral, cellular, and mucosal immune responses. Also, based on CVB1-specific IgG-antibody responses, we conclude that CVB1-VLP can be taken up by immune cells when administrated intranasally and further structural engineering for the VLP may increase the mucosal immunogenicity. The preparations contained mixtures of compact and expanded A particles with 85% expanded in the formalin-inactivated virus, but only 52% in the VLP observed by cryogenic electron microscopy. To correlate the structure to immunogenicity, we solved the structures of the CVB1-VLP and the formalin-inactivated CVB1 virus at resolutions ranging from 2.15 A to 4.1 A for the expanded and compact VLP and virus particles by image reconstruction. These structures can be used in designing mutations increasing the stability and immunogenicity of CVB1-VLP in the future. Overall, our results highlight the potential of using formalin inactivated CVB1 vaccine in mucosal immunization programs and provide important information for future development of VLP-based vaccines against all enteroviruses.

4.
Front Microbiol ; 14: 1287167, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125579

RESUMEN

Due to seasonally appearing viruses and several outbreaks and present pandemic, we are surrounded by viruses in our everyday life. In order to reduce viral transmission, functionalized surfaces that inactivate viruses are in large demand. Here the endeavor was to functionalize cellulose-based materials with tannic acid (TA) and tannin-rich extracts by using different binding polymers to prevent viral infectivity of both non-enveloped coxsackievirus B3 (CVB3) and enveloped human coronavirus OC43 (HCoV-OC43). Direct antiviral efficacy of TA and spruce bark extract in solution was measured: EC50 for CVB3 was 0.12 and 8.41 µg/ml and for HCoV-OC43, 78.16 and 95.49 µg/ml, respectively. TA also led to an excellent 5.8- to 7-log reduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infectivity. TA functionalized materials reduced infectivity already after 5-min treatment at room temperature. All the tested methods to bind TA showed efficacy on paperboard with 0.1 to 1% (w/v) TA concentrations against CVB3 whereas material hydrophobicity decreased activities. Specific signatures for TA and HCoV-OC43 were discovered by Raman spectroscopy and showed clear co-localization on the material. qPCR study suggested efficient binding of CVB3 to the TA functionalized cellulose whereas HCoV-OC43 was flushed out from the surfaces more readily. In conclusion, the produced TA-materials showed efficient and broadly acting antiviral efficacy. Additionally, the co-localization of TA and HCoV-OC43 and strong binding of CVB3 to the functionalized cellulose demonstrates an interaction with the surfaces. The produced antiviral surfaces thus show promise for future use to increase biosafety and biosecurity by reducing pathogen persistence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA