Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 606(7916): 884-889, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35512730

RESUMEN

Solid-state spin qubits is a promising platform for quantum computation and quantum networks1,2. Recent experiments have demonstrated high-quality control over multi-qubit systems3-8, elementary quantum algorithms8-11 and non-fault-tolerant error correction12-14. Large-scale systems will require using error-corrected logical qubits that are operated fault tolerantly, so that reliable computation becomes possible despite noisy operations15-18. Overcoming imperfections in this way remains an important outstanding challenge for quantum science15,19-27. Here, we demonstrate fault-tolerant operations on a logical qubit using spin qubits in diamond. Our approach is based on the five-qubit code with a recently discovered flag protocol that enables fault tolerance using a total of seven qubits28-30. We encode the logical qubit using a new protocol based on repeated multi-qubit measurements and show that it outperforms non-fault-tolerant encoding schemes. We then fault-tolerantly manipulate the logical qubit through a complete set of single-qubit Clifford gates. Finally, we demonstrate flagged stabilizer measurements with real-time processing of the outcomes. Such measurements are a primitive for fault-tolerant quantum error correction. Although future improvements in fidelity and the number of qubits will be required to suppress logical error rates below the physical error rates, our realization of fault-tolerant protocols on the logical-qubit level is a key step towards quantum information processing based on solid-state spins.

2.
Nature ; 597(7874): 45-50, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34471276

RESUMEN

Conventional wisdom holds that macroscopic classical phenomena naturally emerge from microscopic quantum laws1-7. However, despite this mantra, building direct connections between these two descriptions has remained an enduring scientific challenge. In particular, it is difficult to quantitatively predict the emergent 'classical' properties of a system (for example, diffusivity, viscosity and compressibility) from a generic microscopic quantum Hamiltonian7-14. Here we introduce a hybrid solid-state spin platform, where the underlying disordered, dipolar quantum Hamiltonian gives rise to the emergence of unconventional spin diffusion at nanometre length scales. In particular, the combination of positional disorder and on-site random fields leads to diffusive dynamics that are Fickian yet non-Gaussian15-20. Finally, by tuning the underlying parameters within the spin Hamiltonian via a combination of static and driven fields, we demonstrate direct control over the emergent spin diffusion coefficient. Our work enables the investigation of hydrodynamics in many-body quantum spin systems.

3.
Nature ; 576(7787): 411-415, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31853078

RESUMEN

Nuclear magnetic resonance (NMR) is a powerful method for determining the structure of molecules and proteins1. Whereas conventional NMR requires averaging over large ensembles, recent progress with single-spin quantum sensors2-9 has created the prospect of magnetic imaging of individual molecules10-13. As an initial step towards this goal, isolated nuclear spins and spin pairs have been mapped14-21. However, large clusters of interacting spins-such as those found in molecules-result in highly complex spectra. Imaging these complex systems is challenging because it requires high spectral resolution and efficient spatial reconstruction with sub-ångström precision. Here we realize such atomic-scale imaging using a single nitrogen vacancy centre as a quantum sensor, and demonstrate it on a model system of 27 coupled 13C nuclear spins in diamond. We present a multidimensional spectroscopy method that isolates individual nuclear-nuclear spin interactions with high spectral resolution (less than 80 millihertz) and high accuracy (2 millihertz). We show that these interactions encode the composition and inter-connectivity of the cluster, and develop methods to extract the three-dimensional structure of the cluster with sub-ångström resolution. Our results demonstrate a key capability towards magnetic imaging of individual molecules and other complex spin systems9-13.

4.
Nature ; 526(7575): 682-6, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26503041

RESUMEN

More than 50 years ago, John Bell proved that no theory of nature that obeys locality and realism can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported; however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in 'loopholes'. Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We use an event-ready scheme that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 ± 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions. We performed 245 trials that tested the CHSH-Bell inequality S ≤ 2 and found S = 2.42 ± 0.20 (where S quantifies the correlation between measurement outcomes). A null-hypothesis test yields a probability of at most P = 0.039 that a local-realist model for space-like separated sites could produce data with a violation at least as large as we observe, even when allowing for memory in the devices. Our data hence imply statistically significant rejection of the local-realist null hypothesis. This conclusion may be further consolidated in future experiments; for instance, reaching a value of P = 0.001 would require approximately 700 trials for an observed S = 2.4. With improvements, our experiment could be used for testing less-conventional theories, and for implementing device-independent quantum-secure communication and randomness certification.

5.
Nature ; 497(7447): 86-90, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23615617

RESUMEN

Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.

6.
Phys Rev Lett ; 114(1): 017601, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25615501

RESUMEN

We report on the noise spectrum experienced by few nanometer deep nitrogen-vacancy centers in diamond as a function of depth, surface coating, magnetic field and temperature. Analysis reveals a double-Lorentzian noise spectrum consistent with a surface electronic spin bath in the low frequency regime, along with a faster noise source attributed to surface-modified phononic coupling. These results shed new light on the mechanisms responsible for surface noise affecting shallow spins at semiconductor interfaces, and suggests possible directions for further studies. We demonstrate dynamical decoupling from the surface noise, paving the way to applications ranging from nanoscale NMR to quantum networks.


Asunto(s)
Diamante/química , Modelos Teóricos , Análisis Espectral/métodos , Electrónica , Nanotecnología/métodos , Nitrógeno/química , Relación Señal-Ruido
7.
Phys Rev Lett ; 114(14): 145502, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25910136

RESUMEN

We report direct measurement of population dynamics in the excited state manifold of a nitrogen-vacancy (NV) center in diamond. We quantify the phonon-induced mixing rate and demonstrate that it can be completely suppressed at low temperatures. Further, we measure the intersystem crossing (ISC) rate for different excited states and develop a theoretical model that unifies the phonon-induced mixing and ISC mechanisms. We find that our model is in excellent agreement with experiment and that it can be used to predict unknown elements of the NV center's electronic structure. We discuss the model's implications for enhancing the NV center's performance as a room-temperature sensor.

8.
Nano Lett ; 14(4): 1982-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24588353

RESUMEN

We report the observation of stable optical transitions in nitrogen-vacancy (NV) centers created by ion implantation. Using a combination of high temperature annealing and subsequent surface treatment, we reproducibly create NV centers with zero-phonon lines (ZPL) exhibiting spectral diffusion that is close to the lifetime-limited optical line width. The residual spectral diffusion is further reduced by using resonant optical pumping to maintain the NV(-) charge state. This approach allows for placement of NV centers with excellent optical coherence in a well-defined device layer, which is a crucial step in the development of diamond-based devices for quantum optics, nanophotonics, and quantum information science.

9.
Nano Lett ; 13(5): 1898-902, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23427820

RESUMEN

The realization of an integrated diamond photonic platform, based on a thin single crystal diamond film on top of a silicon dioxide/silicon substrate, is reported. Using this approach, we demonstrate high-quality factor single crystal diamond race-track resonators, operating at near-infrared wavelengths (1550 nm). The devices are integrated with low-loss diamond waveguides terminated with polymer pads (spot size converters) to facilitate in- (out-) coupling of light from (to) an optical fiber. Optical characterization of these resonators reveal quality factors as high as ~250,000 and overall insertion losses as low as 1 dB/facet. Scattering induced mode splitting as well as signatures of nonlinear effects such as optical bistability are observed at an input pump power of ~100 mW in the waveguides.

10.
Nano Lett ; 13(12): 5791-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24156318

RESUMEN

The realization of efficient optical interfaces for solid-state atom-like systems is an important problem in quantum science with potential applications in quantum communications and quantum information processing. We describe and demonstrate a technique for coupling single nitrogen vacancy (NV) centers to suspended diamond photonic crystal cavities with quality factors up to 6000. Specifically, we present an enhancement of the NV center's zero-phonon line fluorescence by a factor of ~ 7 in low-temperature measurements.


Asunto(s)
Nanotecnología , Óptica y Fotónica , Teoría Cuántica , Cristalización , Fluorescencia , Nitrógeno/química
11.
Nat Commun ; 15(1): 2006, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443361

RESUMEN

Spins associated to optically accessible solid-state defects have emerged as a versatile platform for exploring quantum simulation, quantum sensing and quantum communication. Pioneering experiments have shown the sensing, imaging, and control of multiple nuclear spins surrounding a single electron spin defect. However, the accessible size of these spin networks has been constrained by the spectral resolution of current methods. Here, we map a network of 50 coupled spins through high-resolution correlated sensing schemes, using a single nitrogen-vacancy center in diamond. We develop concatenated double-resonance sequences that identify spin-chains through the network. These chains reveal the characteristic spin frequencies and their interconnections with high spectral resolution, and can be fused together to map out the network. Our results provide new opportunities for quantum simulations by increasing the number of available spin qubits. Additionally, our methods might find applications in nano-scale imaging of complex spin systems external to the host crystal.

12.
Phys Rev Lett ; 108(14): 143601, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22540792

RESUMEN

We demonstrate quantum interference between indistinguishable photons emitted by two nitrogen-vacancy centers in distinct diamond samples separated by two meters. Macroscopic solid immersion lenses are used to enhance photon collection efficiency. Quantum interference is verified by measuring a value of the second-order cross-correlation function g((2))(0)=0.35±0.04<0.5. In addition, optical transition frequencies of two separated nitrogen-vacancy centers are tuned into resonance with each other by applying external electric fields. An extension of the present approach to generate entanglement of remote solid-state qubits is discussed.

13.
Science ; 374(6574): 1474-1478, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34735218

RESUMEN

The discrete time crystal (DTC) is a nonequilibrium phase of matter that spontaneously breaks time-translation symmetry. Disorder-induced many-body localization can stabilize the DTC phase by breaking ergodicity and preventing thermalization. Here, we observe the hallmark signatures of the many-body­localized DTC using a quantum simulation platform based on individually controllable carbon-13 nuclear spins in diamond. We demonstrate long-lived period-doubled oscillations and confirm that they are robust for generic initial states, thus showing the characteristic time-crystalline order across the many-body spectrum. Our results are consistent with the realization of an out-of-equilibrium Floquet phase of matter and introduce a programmable quantum simulator based on solid-state spins for exploring many-body physics.

14.
Nat Commun ; 12(1): 3470, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108455

RESUMEN

A promising approach for multi-qubit quantum registers is to use optically addressable spins to control multiple dark electron-spin defects in the environment. While recent experiments have observed signatures of coherent interactions with such dark spins, it is an open challenge to realize the individual control required for quantum information processing. Here, we demonstrate the heralded initialisation, control and entanglement of individual dark spins associated to multiple P1 centers, which are part of a spin bath surrounding a nitrogen-vacancy center in diamond. We realize projective measurements to prepare the multiple degrees of freedom of P1 centers-their Jahn-Teller axis, nuclear spin and charge state-and exploit these to selectively access multiple P1s in the bath. We develop control and single-shot readout of the nuclear and electron spin, and use this to demonstrate an entangled state of two P1 centers. These results provide a proof-of-principle towards using dark electron-nuclear spin defects as qubits for quantum sensing, computation and networks.

15.
Nat Commun ; 9(1): 2552, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29959326

RESUMEN

Single electron spins coupled to multiple nuclear spins provide promising multi-qubit registers for quantum sensing and quantum networks. The obtainable level of control is determined by how well the electron spin can be selectively coupled to, and decoupled from, the surrounding nuclear spins. Here we realize a coherence time exceeding a second for a single nitrogen-vacancy electron spin through decoupling sequences tailored to its microscopic nuclear-spin environment. First, we use the electron spin to probe the environment, which is accurately described by seven individual and six pairs of coupled carbon-13 spins. We develop initialization, control and readout of the carbon-13 pairs in order to directly reveal their atomic structure. We then exploit this knowledge to store quantum states in the electron spin for over a second by carefully avoiding unwanted interactions. These results provide a proof-of-principle for quantum sensing of complex multi-spin systems and an opportunity for multi-qubit quantum registers with long coherence times.

16.
Science ; 356(6341): 928-932, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28572386

RESUMEN

The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network.

17.
Cancer Res ; 41(9 Pt 1): 3360-3, 1981 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-6455194

RESUMEN

The 24-hr mean plasma concentrations of dehydroisoandrosterone (DHA) and dehydroisoandrosterone sulfate were measured in 11 women with primary operable breast cancer, ages 31 to 78 years, and in 37 normal women, ages 21 to 75 years. In contrast to the marked and progressive decline of DHA and dehydroisoandrosterone sulfate concentration with age in the normal women, the concentrations of both steroids were age invariant in the cancer patients. The premenopausal patients had subnormal plasma DHA and dehydroisoandrosterone sulfate levels, while the post menopausal patients had supranormal levels. Since the plasma DHA/androsterone ratio was normal in the premenopausal patients and significantly elevated in the postmenopausal patients, it is postulated that the subnormal plasma adrenal androgen levels in the premenopausal patients were due principally to diminished production of these steroids, while the elevated plasma levels in the postmenopausal patients were due principally to slowed metabolic removal. Reports in the literature that DHA inhibits the development of breast cancer in mice suggest that the subnormal plasma DHA levels in premenopausal breast cancer may have clinical significance.


Asunto(s)
Neoplasias de la Mama/sangre , Deshidroepiandrosterona/sangre , Adulto , Factores de Edad , Anciano , Androsterona/sangre , Femenino , Humanos , Menopausia , Persona de Mediana Edad , Análisis de Regresión
18.
Nat Commun ; 7: 13111, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27713397

RESUMEN

Repeated observations inhibit the coherent evolution of quantum states through the quantum Zeno effect. In multi-qubit systems this effect provides opportunities to control complex quantum states. Here, we experimentally demonstrate that repeatedly projecting joint observables of multiple spins creates quantum Zeno subspaces and simultaneously suppresses the dephasing caused by a quasi-static environment. We encode up to two logical qubits in these subspaces and show that the enhancement of the dephasing time with increasing number of projections follows a scaling law that is independent of the number of spins involved. These results provide experimental insight into the interplay between frequent multi-spin measurements and slowly varying noise and pave the way for tailoring the dynamics of multi-qubit systems through repeated projections.

19.
Nat Commun ; 7: 11526, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27146630

RESUMEN

Reliable quantum information processing in the face of errors is a major fundamental and technological challenge. Quantum error correction protects quantum states by encoding a logical quantum bit (qubit) in multiple physical qubits. To be compatible with universal fault-tolerant computations, it is essential that states remain encoded at all times and that errors are actively corrected. Here we demonstrate such active error correction on a continuously protected logical qubit using a diamond quantum processor. We encode the logical qubit in three long-lived nuclear spins, repeatedly detect phase errors by non-destructive measurements, and apply corrections by real-time feedback. The actively error-corrected qubit is robust against errors and encoded quantum superposition states are preserved beyond the natural dephasing time of the best physical qubit in the encoding. These results establish a powerful platform to investigate error correction under different types of noise and mark an important step towards fault-tolerant quantum information processing.

20.
Nat Nanotechnol ; 11(3): 247-52, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26571007

RESUMEN

Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA