Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Anim Genet ; 54(5): 591-605, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37381662

RESUMEN

Analysis of genomic data is becoming more and more common for the effective management of livestock breeding programmes, even in the case of local populations. In this work, the genome-wide data of Nero Siciliano pig breed were compared to that of wild boar, Italian local and cosmopolitan breeds to investigate its genetic structure, and runs of homozygosity (ROH) and heterozygosity patterns. The Nero Siciliano has been reported to have the highest rate of genetic diversity among the Italian breeds, and a genetic variability comparable to that of the cosmopolitan breeds. Analyses of genomic structure and relationships underlined its proximity to wild boar, and an internal substructure probably linked to different family lines. The breed showed a low value of inbreeding estimated from ROH, and the highest diversity index among the Italian breeds, even if lower than that of the cosmopolitans. Four ROH islands in three chromosomes (SSC8, SSC11, and SSC14) and one heterozygosity-rich region (SSC1) were identified in Nero Siciliano, highlighting genomic regions related to productive QTL. Across breeds, SSC8 and SSC14 were the chromosomes with most ROH islands, with Mora Romagnola and wild boar showing the highest level of autozygosity. Chromosomes SSC2, SSC6, SSC8 and SSC13 showed the majority of runs of heterozygosity regions, mainly found in the cosmopolitan pig breeds, which reported several genes associated with health-related QTL. The outlined results can help to better identify the genomic profile of this local breed in order to plan matings, maintain adequate internal diversity and exploit the production system.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Porcinos , Animales , Genotipo , Homocigoto , Endogamia , Italia , Sus scrofa/genética
2.
J Anim Breed Genet ; 139(5): 540-555, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35445758

RESUMEN

Purosangue Orientale Siciliano, Sanfratellano and Siciliano represent the Sicilian equine genetic resource. This study aimed to investigate the genetic diversity, population structure and the pattern of autozygosity of Sicilian horse populations using genome-wide single-nucleotide polymorphism (SNP) data generated with the Illumina Equine SNP70 array. The genotyping data of 17 European and Middle East populations were also included in the study. The patterns of genetic differentiation, model-based clustering and Neighbour-Net showed the expected positioning of Sicilian populations within the wide analysed framework and the close connections between the Purosangue Orientale Siciliano and the Arab as well as between Sanfratellano, Siciliano and Maremmano. The highest expected heterozygosity (He ) and contemporary effective population size (cNe) were reported in Siciliano (He  = 0.323, cNe = 397), and the lowest were reported in Purosangue Orientale Siciliano (He  = 0.277, cNe = 10). The analysis of the runs of homozygosity and the relative derived inbreeding revealed high internal homogeneity in Purosangue Orientale Siciliano and Arab horses, intermediate values in Maremmano and Sanfratellano and high heterogeneity in the Siciliano population. The genome-wide SNP analysis showed the selective pressure on Purosangue Orientale Siciliano towards traits related to endurance performance. Our results underline the importance of planning adequate conservation and exploitation programmes to reduce the level of inbreeding and, therefore, the loss of genetic diversity.


Asunto(s)
Genoma , Endogamia , Animales , Genoma/genética , Genotipo , Homocigoto , Caballos/genética , Polimorfismo de Nucleótido Simple , Densidad de Población
3.
Genet Sel Evol ; 53(1): 48, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078254

RESUMEN

BACKGROUND: During the Neolithic expansion, cattle accompanied humans and spread from their domestication centres to colonize the ancient world. In addition, European cattle occasionally intermingled with both indicine cattle and local aurochs resulting in an exclusive pattern of genetic diversity. Among the most ancient European cattle are breeds that belong to the so-called Podolian trunk, the history of which is still not well established. Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, through an approximate Bayesian computation random forest (ABC-RF) approach. RESULTS: Our results indicate that European Podolian cattle display higher values of genetic diversity indices than both African taurine and Asian indicine breeds. Clustering analyses show that Podolian breeds share close genomic relationships, which suggests a likely common genetic ancestry. Among the simulated and tested scenarios of the colonization of Europe from taurine cattle, the greatest support was obtained for the model assuming at least two waves of diffusion. Time estimates are in line with an early migration from the domestication centre of non-Podolian taurine breeds followed by a secondary migration of Podolian breeds. The best fitting model also suggests that the Italian Podolian breeds are the result of admixture between different genomic pools. CONCLUSIONS: This comprehensive dataset that includes most of the autochthonous cattle breeds belonging to the so-called Podolian trunk allowed us not only to shed light onto the origin and diversification of this group of cattle, but also to gain new insights into the diffusion of European cattle. The most well-supported scenario of colonization points to two main waves of migrations: with one that occurred alongside with the Neolithic human expansion and gave rise to the non-Podolian taurine breeds, and a more recent one that favoured the diffusion of European Podolian. In this process, we highlight the importance of both the Mediterranean and Danube routes in promoting European cattle colonization. Moreover, we identified admixture as a driver of diversification in Italy, which could represent a melting pot for Podolian cattle.


Asunto(s)
Bovinos/genética , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Selección Artificial , Distribución Animal , Animales , Teorema de Bayes , Evolución Molecular , Frecuencia de los Genes
4.
Genet Sel Evol ; 53(1): 92, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895134

RESUMEN

BACKGROUND: Climate and farming systems, several of which are considered as low-input agricultural systems, vary between goat populations from Northern and Southern Italy and have led to different management practices. These processes have impacted genome shaping in terms of inbreeding and regions under selection and resulted in differences between the northern and southern populations. Both inbreeding and signatures of selection can be pinpointed by the analysis of runs of homozygosity (ROH), which provides useful information to assist the management of this species in different rural areas. RESULTS: We analyzed the ROH distribution and inbreeding (FROH) in 902 goats from the Italian Goat Consortium2 dataset. We evaluated the differences in individual ROH number and length between goat breeds from Northern (NRD) and Central-southern (CSD) Italy. Then, we identified the signatures of selection that differentiate these two groups using three methods: ROH, ΔROH, and averaged FST. ROH analyses showed that some Italian goat breeds have a lower inbreeding coefficient, which is attributable to their management and history. ROH are longer in breeds that are undergoing non-optimal management or with small population size. In several small breeds, the ROH length classes are balanced, reflecting more accurate mating planning. The differences in climate and management between the NRD and CSD groups have resulted in different ROH lengths and numbers: the NRD populations bred in isolated valleys present more and shorter ROH segments, while the CSD populations have fewer and longer ROH, which is likely due to the fact that they have undergone more admixture events during the horizontal transhumance practice followed by a more recent standardization. We identified four genes within signatures of selection on chromosome 11 related to fertility in the NRD group, and 23 genes on chromosomes 5 and 6 related to growth in the CSD group. Finally, we identified 17 genes on chromosome 12 related to environmental adaptation and body size with high homozygosity in both groups. CONCLUSIONS: These results show how different management practices have impacted the level of genomic inbreeding in two Italian goat groups and could be useful to assist management in a low-input system while safeguarding the diversity of small populations.


Asunto(s)
Cabras , Polimorfismo de Nucleótido Simple , Animales , Genoma , Cabras/genética , Homocigoto , Endogamia
5.
Amino Acids ; 50(6): 735-746, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29572574

RESUMEN

In the last years, donkey milk had evidenced a renewed interest as a potential functional food and a breast milk substitute. In this light, the study of the protein composition assumes an important role. In particular, ß-lactoglobulin (ß-LG), which is considered as one of the main allergenic milk protein, in donkey species consists of two molecular forms, namely ß-LG I and ß-LG II. In the present research, a genetic analysis coupled with a proteomic approach showed the presence of a new allele, here named F, which is apparently associated with a null or a severely reduced expression of ß-LG II protein. The new ß-LG II F genetic variant shows a theoretical average mass (Mav) of 18,310.64 Da, a value practically corresponding with that of the variant D (∆mass < 0.07 Da), but differs from ß-LG II D for two amino acid substitutions: Thr100 (variant F) → Ala100 (variant D) and Thr118 (variant F) → Met118 (variant D). Proteomic investigation of the whey protein fraction of an individual milk sample, homozygous FF at ß-LG II locus, allowed to identify, as very minor component, the new ß-LG II F genetic variant. By MS/MS analysis of enzymatic digests, the sequence of the ß-LG II F was characterized, and the predicted genomic data confirmed.


Asunto(s)
Equidae , Regulación de la Expresión Génica/fisiología , Sitios Genéticos , Variación Genética , Lactoglobulinas , Animales , Equidae/genética , Equidae/metabolismo , Lactoglobulinas/biosíntesis , Lactoglobulinas/genética
6.
Genet Sel Evol ; 50(1): 35, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29940848

RESUMEN

BACKGROUND: In the last 50 years, the diversity of cattle breeds has experienced a severe contraction. However, in spite of the growing diffusion of cosmopolite specialized breeds, several local cattle breeds are still farmed in Italy. Genetic characterization of breeds represents an essential step to guide decisions in the management of farm animal genetic resources. The aim of this work was to provide a high-resolution representation of the genome-wide diversity and population structure of Italian local cattle breeds using a medium-density single nucleotide polymorphism (SNP) array. RESULTS: After quality control filtering, the dataset included 31,013 SNPs for 800 samples from 32 breeds. Our results on the genetic diversity of these breeds agree largely with their recorded history. We observed a low level of genetic diversity, which together with the small size of the effective populations, confirmed that several breeds are threatened with extinction. According to the analysis of runs of homozygosity, evidence of recent inbreeding was strong in some local breeds, such as Garfagnina, Mucca Pisana and Pontremolese. Patterns of genetic differentiation, shared ancestry, admixture events, and the phylogenetic tree, all suggest the presence of gene flow, in particular among breeds that originate from the same geographical area, such as the Sicilian breeds. In spite of the complex admixture events that most Italian cattle breeds have experienced, they have preserved distinctive characteristics and can be clearly discriminated, which is probably due to differences in genetic origin, environment, genetic isolation and inbreeding. CONCLUSIONS: This study is the first exhaustive genome-wide analysis of the diversity of Italian cattle breeds. The results are of significant importance because they will help design and implement conservation strategies. Indeed, efforts to maintain genetic diversity in these breeds are needed. Improvement of systems to record and monitor inbreeding in these breeds may contribute to their in situ conservation and, in view of this, the availability of genomic data is a fundamental resource.


Asunto(s)
Animales Domésticos/genética , Conservación de los Recursos Naturales/métodos , Variación Genética , Polimorfismo de Nucleótido Simple , Animales , Cruzamiento , Bovinos , Evolución Molecular , Genética de Población , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Filogenia , Densidad de Población
7.
Trop Anim Health Prod ; 49(5): 989-994, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28412767

RESUMEN

Thirty-two Comisana ewes at late lactation were used in two trials carried out during late spring in 2 consecutive years, with the aim to evaluate the effect of the duration of grazing on herbage intake and performance. In each trial, 16 pluriparous Comisana lactating ewes were equally divided into two groups which grazed in two separate areas of natural pasture from 11:00 to 15:00 h (group 4H) or from 10:00 to 17:00 (group 7H). A concentrate mixture (500 g/day) was also offered to each ewe. The mean maximum temperature was, respectively, 23.5 ± 3.8 °C during experiment 1 and 27.0 ± 3.1 °C during experiment 2. Probably as a consequence of the differences in climatic conditions, the results on herbage intake and milk production were different during the two trials. Herbage dry matter intake was not affected by the duration of grazing during trial 1, whereas it was significantly lower in 4H group compared to that in 7H group (0.67 vs 1.02 kg/day; P < 0.001) during trial 2. It could be hypothesised that while with lower environmental temperature (trial 1), the 4H ewes were able to reach good intake levels despite grazing during the hottest hours; with higher temperatures throughout the trial (trial 2), the 4H ewes reduced ingestion. Milk production was higher in 4H group during trial 1 (778 vs 707 g/day; P = 0.006), whereas it was not affected by the number of hours of grazing during trial 2, despite the higher intake levels reached by the 7H group. In conclusion, 3 extra hours of grazing for ewes at late lactation on a low quality pasture could be nullified in terms of yield response.


Asunto(s)
Conducta Alimentaria , Leche/metabolismo , Oveja Doméstica/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Ingestión de Alimentos , Femenino , Lactancia , Factores de Tiempo
8.
Genet Sel Evol ; 47: 62, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26239391

RESUMEN

BACKGROUND: Among the European countries, Italy counts the largest number of local goat breeds. Thanks to the recent availability of a medium-density SNP (single nucleotide polymorphism) chip for goat, the genetic diversity of Italian goat populations was characterized by genotyping samples from 14 Italian goat breeds that originate from different geographical areas with more than 50 000 SNPs evenly distributed on the genome. RESULTS: Analysis of the genotyping data revealed high levels of genetic polymorphism and an underlying North-south geographic pattern of genetic diversity that was highlighted by both the first dimension of the multi-dimensional scaling plot and the Neighbour network reconstruction. We observed a moderate and weak population structure in Northern and Central-Southern breeds, respectively, with pairwise FST values between breeds ranging from 0.013 to 0.164 and 7.49 % of the total variance assigned to the between-breed level. Only 2.11 % of the variance explained the clustering of breeds into geographical groups (Northern, Central and Southern Italy and Islands). CONCLUSIONS: Our results indicate that the present-day genetic diversity of Italian goat populations was shaped by the combined effects of drift, presence or lack of gene flow and, to some extent, by the consequences of traditional management systems and recent demographic history. Our findings may constitute the starting point for the development of marker-assisted approaches, to better address future breeding and management policies in a species that is particularly relevant for the medium- and long-term sustainability of marginal regions.


Asunto(s)
Cabras/clasificación , Cabras/genética , Polimorfismo de Nucleótido Simple , Animales , Flujo Génico , Flujo Genético , Genotipo , Endogamia , Italia , Filogeografía
9.
J Hered ; 105(3): 429-35, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24558100

RESUMEN

The dietary demand of the modern horse relies on high-cereal feeding and limited forage compared with natural grazing conditions, predisposing the horse to several important diseases. Salivary and pancreatic alpha-amylases (coded by AMY1 and AMY2 genes, respectively) play a crucial role in carbohydrate digestion in nonruminants, but little is known about these 2 genes in the horse. Aim of this work has been to distinguish genomic sequences of horse AMY1 and AMY2 genes and to analyze any polymorphisms in breeds historically characterized by marked differences in nutritional management. A single nucleotide polymorphism detection was performed and 7 novel single nucleotide polymorphisms were found. Three single nucleotide polymorphisms are in exons and were genotyped in 112 horses belonging to 6 breeds. One single nucleotide polymorphism in AMY1 gene distinguished Haflinger and the Italian native Murgese from the other breeds, whereas both the single nucleotide polymorphisms in AMY2 gene showed different allelic frequencies in Friesian compared with the other breeds. These differences are confirmed by quite high fixation index (Fst) values for these 2 nonsynonymous single nucleotide polymorphisms. These preliminary results highlight marked divergences in allele frequencies of AMY1 and AMY2 genes, involved in starch digestion, between horse breeds characterized by different histories of selection, thus providing first indications of possible relations between genetics and nutritional management.


Asunto(s)
Digestión/genética , Caballos/genética , alfa-Amilasas Pancreáticas/genética , alfa-Amilasas Salivales/genética , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Biodiversidad , Carbohidratos de la Dieta , Grano Comestible/química , Variación Genética , Técnicas de Genotipaje , Caballos/clasificación , Italia , Polimorfismo de Nucleótido Simple , Alineación de Secuencia , Análisis de Secuencia de ADN
11.
Front Genet ; 15: 1379086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881792

RESUMEN

Local livestock breeds play a crucial role in global biodiversity, connecting natural and human-influenced environments and contributing significantly to ecosystem services. While commercial breeds dominate industrial systems, local livestock breeds in developing countries, like Barbarine sheep in Tunisia, are vital for food security and community maintenance. The Tunisian Barbarine sheep, known for its adaptability and distinctive fat-tailed morphology, faces challenges due to historical crossbreeding. In this study, the Illumina Ovine SNP50K BeadChip array was used to perform a genome-wide characterization of Tunisian Barbarine sheep to investigate its genetic diversity, the genome structure, and the relationship within the context of Mediterranean breeds. The results show moderate genetic diversity and low inbreeding. Runs of Homozygosity analysis find genomic regions linked to important traits, including fat tail characteristics. Genomic relationship analysis shows proximity to Algerian thin-tailed breeds, suggesting crossbreeding impacts. Admixture analysis reveals unique genetic patterns, emphasizing the Tunisian Barbarine's identity within the Mediterranean context and its closeness to African breeds. Current results represent a starting point for the creation of monitoring and conservation plans. In summary, despite genetic dilution due to crossbreeding, the identification of genomic regions offers crucial insights for conservation. The study confirms the importance of preserving unique genetic characteristics of local breeds, particularly in the face of ongoing crossbreeding practices and environmental challenges. These findings contribute valuable insights for the sustainable management of this unique genetic reservoir, supporting local economies and preserving sheep species biodiversity.

12.
Sci Rep ; 14(1): 3, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168531

RESUMEN

Heterozygosity-rich regions (HRR) are genomic regions of high heterozygosity, which may harbor loci related to key functional traits such as immune response, survival rate, fertility, and other fitness traits. This study considered 30 Italian and 19 worldwide goat breeds genotyped with the Illumina GoatSNP50k BeadChip. The aim of the work was to study inter-breed relationships and HRR patterns using Sliding Window (SW) and Consecutive Runs (CR) detection methods. Genetic relationships highlighted a clear separation between non-European and European breeds, as well as the north-south geographic cline within the latter. The Pearson correlation coefficients between the descriptive HRR parameters obtained with the SW and CR methods were higher than 0.9. A total of 166 HRR islands were detected. CHI1, CHI11, CHI12 and CHI18 were the chromosomes harboring the highest number of HRR islands. The genes annotated in the islands were linked to various factors such as productive, reproductive, immune, and environmental adaptation mechanisms. Notably, the Montecristo feral goat showed the highest number of HRR islands despite the high level of inbreeding, underlining potential balancing selection events characterizing its evolutionary history. Identifying a species-specific HRR pattern could provide a clearer view of the mechanisms regulating the genome modelling following anthropogenic selection combined with environmental interaction.


Asunto(s)
Genoma , Cabras , Animales , Cabras/genética , Genotipo , Heterocigoto , Endogamia , Italia , Polimorfismo de Nucleótido Simple , Homocigoto
13.
Animals (Basel) ; 13(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37570341

RESUMEN

The nutritional value of sheep's milk and its derivatives is influenced by the lipid fraction, which is affected by diet and genetics. This study aimed to explore the genetic variations in the DGAT1 and SCD genes and assessed the impact of the DGAT1 genotype on milk quality in Valle del Belìce sheep, considering diet supplementation with carob pulp and barley grain. Among the potentially polymorphic sites, only DGAT1 g.127 C > A and SCD g.87 C > A showed variability. The DGAT1 genotype did not significantly impact milk yield and composition, except for higher urea content in the CA genotypes than in the CC ones. Carob pulp increased the milk fat content compared to barley grain. Genetic variation in DGAT1 was associated with changes in the milk fatty acid profile; specifically, the CA genotype exhibited higher levels of short-chain fatty acids and lower levels of polyunsaturated fatty acids compared to the CC genotype. Carob pulp supplementation increased saturated fatty acids and reduced unsaturated fractions, leading to milk with higher atherogenic and thrombogenic indices. No significant interaction was found between genotype and diet. This study provides insights into the genetic and dietary factors influencing sheep's milk composition. Further research is needed to understand the impact of these genetic variations on milk production and composition, as well as to determine optimal levels of carob pulp for improving fat percentage and promoting sustainable sheep breeding practices.

14.
ScientificWorldJournal ; 2012: 648427, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22649301

RESUMEN

The genetic variability of Pantesco and other two Sicilian autochthonous donkey breeds (Ragusano and Grigio Siciliano) was assessed using a set of 14 microsatellites. The main goals were to describe the current differentiation among the breeds and to provide genetic information useful to safeguard the Pantesco breed as well as to manage Ragusano and Grigio Siciliano. In the whole sample, that included 108 donkeys representative of the three populations, a total of 85 alleles were detected. The mean number of alleles was lower in Pantesco (3.7), than in Grigio Siciliano and Ragusano (4.4 and 5.9, resp.). The three breeds showed a quite low level of gene diversity (He) ranging from 0.471 in Pantesco to 0.589 in Grigio. The overall genetic differentiation index (Fst) was quite high; more than 10% of the diversity was found among breeds. Reynolds' (D(R)) genetic distances, correspondence, and population structure analysis reproduced the same picture, revealing that, (a) Pantesco breed is the most differentiated in the context of the Sicilian indigenous breeds, (b) within Ragusano breed, two well-defined subgroups were observed. This information is worth of further investigation in order to provide suitable data for conservation strategies.


Asunto(s)
Equidae/genética , Variación Genética , Alelos , Animales , Femenino , Masculino , Repeticiones de Microsatélite , Polimorfismo Genético , Sicilia
15.
Animals (Basel) ; 12(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35681800

RESUMEN

Food authentication in local breeds has important implications from both an economic and a qualitative point of view. Meat products from autochthonous breeds are of premium value, but can easily incur fraudulent or accidental substitution or mislabeling. The aim of this study was to identify a small number of SNPs using the Illumina PorcineSNP60 BeadChip for breed traceability, in particular of the Italian Nero Siciliano pig and its derived products. A panel of 12 SNPs was sufficient to discriminate Nero Siciliano pig from cosmopolitan breeds and wild boars. After adding 8 SNPs, the final panel of 20 SNPs allowed us to discriminate all the breeds involved in the study, to correctly assign each individual to its breed, and, moreover, to discriminate Nero Siciliano from first-generation hybrids. Almost all livestock breeds are being genotyped with medium- or high-density SNP panels, providing a large amount of information for many applications. Here, we proposed a method to select a reduced SNP panel to be used for the traceability of pig breeds.

16.
Animals (Basel) ; 12(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077919

RESUMEN

Understanding the relationships among geography, climate, and genetics is increasingly important for animal farming and breeding. In this study, we examine these inter-relationships in the context of local cattle and sheep breeds distributed along the Italian territory. To this aim, we used redundancy analysis on genomic data from previous projects combined with geographical coordinates and corresponding climatic data. The effect of geographic factors (latitude and longitude) was more important in sheep (26.4%) than that in cattle (13.8%). Once geography had been partialled out of analysis, 10.1% of cattle genomic diversity and 13.3% of that of sheep could be ascribed to climatic effects. Stronger geographic effects in sheep can be related to a combination of higher pre-domestication genetic variability together with biological and productive specificities. Climate alone seems to have had less impact on current genetic diversity in both species, even if climate and geography are greatly confounded. Results confirm that both species are the result of complex evolutionary histories triggered by interactions between human needs and environmental conditions.

17.
J Hered ; 102(6): 753-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21914666

RESUMEN

Genetic diversity and relationship among 3 Sicilian horse breeds were investigated using 16 microsatellite markers and a 397-bp length mitochondrial D-loop sequence. The analysis of autosomal DNA was performed on 191 horses (80 Siciliano [SIC], 61 Sanfratellano [SAN], and 50 Sicilian Oriental Purebred [SOP]). SIC and SAN breeds were notably higher in genetic variability than the SOP. Genetic distances and cluster analysis showed a close relationship between SIC and SAN breeds, as expected according to the breeds' history. Sequencing of hypervariable mitochondrial DNA region was performed on a subset of 60 mares (20 for each breed). Overall, 20 haplotypes with 31 polymorphic sites were identified: A higher haplotype diversity was detected in SIC and SAN breeds, with 13 and 11 haplotypes respectively, whereas only one haplotype was found in SOP. These were compared with 118 sequences from GenBank. BLAST showed that 17 of the 20 haplotypes had been reported previously in other breeds. One haplotype, found in SIC, traces back to a Bronze Age archaeological site (Inner Mongolia). The 3 Sicilian breeds are now rare, and 2 of them are officially endangered. Our results represent a valuable tool for management strategies as well as for conservation purposes.


Asunto(s)
Dermatoglifia del ADN/métodos , ADN Mitocondrial/genética , Caballos/genética , Repeticiones de Microsatélite , Animales , Cruzamiento , Análisis por Conglomerados , Especies en Peligro de Extinción , Femenino , Marcadores Genéticos , Variación Genética , Haplotipos , Masculino , Mitocondrias/genética , Filogenia , Filogeografía , Polimorfismo Genético , Análisis de Secuencia de ADN , Sicilia
18.
Animals (Basel) ; 11(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800504

RESUMEN

A wide range of mammalian hybrids has recently been found by chance or through population-screening programs, but studies about their fertilizing capacity remain scarce and incomplete. Most of them are assumed to be sterile due to meiotic arrest caused by the failure of chromosome pairings. In this study, we evaluated both sperm meiotic segregation, by 2D fluorescent in situ hybridization (FISH) analysis, and sperm quality (Sperm Chromatin Structure Assay) by flow cytometer in a fertile boar-pig hybrid (2n = 37,XY) originating from a Nero Siciliano pig breed (Sus scrofa domesticus) and a wild boar (Sus scrofa ferus). Spermatozoa were also separated by a dual-layer (75-60%) discontinuous Percoll gradient, resulting in two fractions with a significantly better overall quality in the motile sperm fraction. These data were confirmed by FISH analysis also, where the frequencies of spermatozoa with a regular chromosome composition were 27% in total sperm fraction and 64% in motile sperm fraction. We also evaluated the nuclear architecture in all counted spermatozoa, showing a chromatin distribution changing when chromosome abnormalities occur. Our results demonstrate that the chromosome pairing has a minimal effect on the sperm segregation and semen quality of a boar-pig hybrid, making it fertile and harmful for the conservation of autochthonous pig breeds.

19.
Animals (Basel) ; 11(6)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072555

RESUMEN

The interaction between genetic polymorphism and feeding system on milk traits and fatty acid composition was investigated in Modicana cows. Two DGAT1 K232A genotypes (AK and AA) and two feeding regimes, extensive system (EX) with 8 h of grazing without concentrate (EX) and semi-intensive systems (SI) with 2 h of grazing with concentrate, were investigated. DGAT1 genotype did not influence milk yield and composition. The feeding system affected milk composition: protein was significantly higher in SI and lactose in the EX system. A significant genotype × feeding system interaction was observed: the protein and casein levels of AK cows were higher in the SI compared to the EX system. Milk fatty acids profile, total saturated to total unsaturated fatty acids, n-6 to n-3 ratios, and atherogenic index were affected by the feeding system, improving the healthy properties of milk from animals reared in the extensive system. DGAT1 genotype influenced the fatty acid composition: milk from AA cows had a more favorable fatty acid composition due to lower total saturated fatty acids, saturated to unsaturated ratio, atherogenic index, and higher levels of oleic acid and total unsaturated fatty acids. Furthermore, an interaction genotype x feeding system was observed: the AK milk was richer in short-chain FAs (C4:0-C8:0) and C10:0 only in the EX but not in the SI system. Our data suggest that a high amount of green forage in the diet of Modicana cows can resize the effect of the DGAT1 genotype on milk traits and fatty acids composition.

20.
Animals (Basel) ; 11(6)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071004

RESUMEN

The application of genomic technologies has facilitated the assessment of genomic inbreeding based on single nucleotide polymorphisms (SNPs). In this study, we computed several runs of homozygosity (ROH) parameters to investigate the patterns of homozygosity using Illumina Goat SNP50 in five Italian local populations: Argentata dell'Etna (N = 48), Derivata di Siria (N = 32), Girgentana (N = 59), Maltese (N = 16) and Messinese (N = 22). The ROH results showed well-defined differences among the populations. A total of 3687 ROH segments >2 Mb were detected in the whole sample. The Argentata dell'Etna and Messinese were the populations with the lowest mean number of ROH and inbreeding coefficient values, which reflect admixture and gene flow. In the Girgentana, we identified an ROH pattern related with recent inbreeding that can endanger the viability of the breed due to reduced population size. The genomes of Derivata di Siria and Maltese breeds showed the presence of long ROH (>16 Mb) that could seriously impact the overall biological fitness of these breeds. Moreover, the results confirmed that ROH parameters are in agreement with the known demography of these populations and highlighted the different selection histories and breeding schemes of these goat populations. In the analysis of ROH islands, we detected harbored genes involved with important traits, such as for milk yield, reproduction, and immune response, and are consistent with the phenotypic traits of the studied goat populations. Finally, the results of this study can be used for implementing conservation programs for these local populations in order to avoid further loss of genetic diversity and to preserve the production and fitness traits. In view of this, the availability of genomic data is a fundamental resource.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA