RESUMEN
Knowledge of species' functional traits is essential for understanding biodiversity patterns, predicting the impacts of global environmental changes, and assessing the efficiency of conservation measures. Bats are major components of mammalian diversity and occupy a variety of ecological niches and geographic distributions. However, an extensive compilation of their functional traits and ecological attributes is still missing. Here we present EuroBaTrait 1.0, the most comprehensive and up-to-date trait dataset covering 47 European bat species. The dataset includes data on 118 traits including genetic composition, physiology, morphology, acoustic signature, climatic associations, foraging habitat, roost type, diet, spatial behaviour, life history, pathogens, phenology, and distribution. We compiled the bat trait data obtained from three main sources: (i) a systematic literature and dataset search, (ii) unpublished data from European bat experts, and (iii) observations from large-scale monitoring programs. EuroBaTrait is designed to provide an important data source for comparative and trait-based analyses at the species or community level. The dataset also exposes knowledge gaps in species, geographic and trait coverage, highlighting priorities for future data collection.
Asunto(s)
Quirópteros , Animales , Biodiversidad , Quirópteros/fisiología , Ecosistema , Europa (Continente) , MamíferosRESUMEN
1. Although behaviours can contribute to the heterogeneity in parasite load among hosts, links between consistent individual differences in behaviour and parasitic infection have received little attention. We investigated the role of host activity and exploration on hard tick infestations of marked individuals in a population of Siberian chipmunks Tamias sibiricus introduced in a suburban French forest over 3 years. 2. Individual activity-exploration profiles were assessed from 106 hole-board tests on 73 individuals, and chipmunks' trappability and trap diversity were used respectively as indices of their activity-exploration and space use on a sub-sample of 60 individuals. At each capture, we counted the total number of ticks per head of chipmunk. 3. We found significant and consistent individual differences in activity-exploration, trappability, trap diversity and tick load, and could estimate individual indices for these four variables, corrected for confounding effects of year, season, body mass and sex. 4. Using a path analysis, we found an indirect effect of activity-exploration on tick load: tick load increased with space use, which in turn was positively affected by trappability in the field. Trappability was itself positively related to activity-exploration in the hole board. Habitat type affected tick load, independently of behavioural traits. A second path model revealed a lack of either direct or indirect influence of tick loads on chipmunks' personality and trappability. 5. Our results show that host personality-related patterns in space use can lead to a non-random parasite distribution among hosts.
Asunto(s)
Conducta Animal/fisiología , Actividad Motora/fisiología , Personalidad , Sciuridae , Infestaciones por Garrapatas/veterinaria , Animales , Ecosistema , Femenino , MasculinoRESUMEN
BACKGROUND: Citizen monitoring programs using acoustic data have been useful for detecting population and community patterns. However, they have rarely been used to study broad scale patterns of species traits. We assessed the potential of acoustic data to detect broad scale patterns in body size. We compared geographical patterns in body size with acoustic signals in the bat species Pipistrellus pipistrellus. Given the correlation between body size and acoustic characteristics, we expected to see similar results when analyzing the relationships of body size and acoustic signals with climatic variables. METHODS: We assessed body size using forearm length measurements of 1,359 bats, captured by mist nets in France. For acoustic analyses, we used an extensive dataset collected through the French citizen bat survey. We isolated each bat echolocation call (n = 4,783) and performed automatic measures of signals, including the frequency of the flattest part of the calls (characteristic frequency). We then examined the relationship between forearm length, characteristic frequencies, and two components resulting from principal component analysis for geographic (latitude, longitude) and climatic variables. RESULTS: Forearm length was positively correlated with higher precipitation, lower seasonality, and lower temperatures. Lower characteristic frequencies (i.e., larger body size) were mostly related to lower temperatures and northern latitudes. While conducted on different datasets, the two analyses provided congruent results. DISCUSSION: Acoustic data from citizen science programs can thus be useful for the detection of large-scale patterns in body size. This first analysis offers a new perspective for the use of large acoustic databases to explore biological patterns and to address both theoretical and applied questions.
RESUMEN
Numerous vertebrate reservoirs have been described for Borrelia burgdorferi sensu lato (sl), which includes the etiological agents of Lyme Borreliosis (LB). The Siberian chipmunk (Tamias sibiricus) is a rodent originating from Asia, where it is suspected to be a B. burgdorferi reservoir. It has been intentionally released into the wild in Europe since the 1970s, but has not yet been subject to any study regarding its association with the LB agent. In this paper we studied Siberian chipmunk infestation with the LB vector (Ixodes ricinus) and infection prevalence by LB spirochetes in a suburban introduced population. We compared these findings with known competent reservoir hosts, the bank vole (Myodes [clethrionomys] glareolus) and wood mouse (Apodemus sylvaticus). All Siberian chipmunks were infested with larvae and larval abundance was higher in this species (mean number of larvae [95% Confidence Interval]: 73.5 [46.0, 117.2]) than in the two other rodent species (bank voles: 4.4 [3.0, 6.3] and wood mice: 10.2 [4.9, 21.2]). Significant factors affecting abundance of larvae were host species and sampling season. Nymphs were most prevalent on chipmunks (86.2%, mean: 5.1 [3.3, 8.0]), one vole carried only two nymphs, and none of the mice had any nymphs. Nymph abundance in chipmunks was affected by sampling season and sex. Furthermore, the infection prevalence of B. burgdorferi sl in the Siberian chipmunk was the highest (33.3%) and predominantly of B. afzelii. The infection prevalence was 14.1% in bank voles, but no wood mouse was found to be infected. Our results suggest that the Siberian chipmunk may be an important reservoir host for LB.
Asunto(s)
Grupo Borrelia Burgdorferi/aislamiento & purificación , Enfermedad de Lyme/veterinaria , Sciuridae/microbiología , Árboles , Animales , Vectores Arácnidos/microbiología , Vectores Arácnidos/parasitología , Arvicolinae/microbiología , Arvicolinae/parasitología , Dermacentor/microbiología , Femenino , Francia/epidemiología , Ixodes/microbiología , Ixodes/fisiología , Enfermedad de Lyme/epidemiología , Enfermedad de Lyme/transmisión , Masculino , Ratones , Murinae/microbiología , Murinae/parasitología , Densidad de Población , Prevalencia , Sciuridae/parasitología , Estaciones del Año , Infestaciones por Garrapatas/veterinariaRESUMEN
The spread of an immigrant host species can be influenced both by its specific helminth parasites that come along with it and by newly acquired infections from native fauna. The Siberian chipmunk, Tamias sibiricus Laxmann (Rodentia, Sciuridae), a northeastern Eurasiatic ground nesting Sciurid, has been introduced in France for less than three decades. Thirty individuals were collected from three suburban forests in the Ile-de-France Region between 2002 and 2006. Two intestinal nematode species dominated the helminth fauna: Brevistriata skrjabini [Prevalence, P, 99% C.I., 87% (64-97%); mean intensity, M.I., 99% C.I., 43 (28-78)] and Aonchotheca annulosa [P, 47% (25-69%); M.I., 35 (3-157)]. B. skrjabini is a direct life cycle nematode species of North Eurasiatic origin, with a restricted spectrum of phylogenetically related suitable hosts. This result indicates that B. skrjabini successfully settled and spread with founder pet chipmunks maintained in captivity and released in natura. Chipmunks acquired A. annulosa, a nematode species with a large spectrum of phylogenetically unrelated suitable host species, from local Muroid rodent species with similar behavior, life-history traits and habitats. Quantitative studies are needed to evaluate the potential for both B. skrjabini and A. annulosa to impede the spread of Tamias and for B. skrjabini to favor chipmunk colonization through detrimental effects upon native co-inhabiting host species.