Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Molecules ; 26(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396544

RESUMEN

From the early precipitation-based techniques, introduced more than a century ago, to the latest development of enzymatic bio- and nano-sensor applications, the analysis of phytic acid and/or other inositol phosphates has never been a straightforward analytical task. Due to the biomedical importance, such as antinutritional, antioxidant and anticancer effects, several types of methodologies were investigated over the years to develop a reliable determination of these intriguing analytes in many types of biological samples; from various foodstuffs to living cell organisms. The main aim of the present work was to critically overview the development of the most relevant analytical principles, separation and detection methods that have been applied in order to overcome the difficulties with specific chemical properties of inositol phosphates, their interferences, absence of characteristic signal (e.g., absorbance), and strong binding interactions with (multivalent) metals and other biological molecules present in the sample matrix. A systematical and chronological review of the applied methodology and the detection system is given, ranging from the very beginnings of the classical gravimetric and titrimetric analysis, through the potentiometric titrations, chromatographic and electrophoretic separation techniques, to the use of spectroscopic methods and of the recently reported fluorescence and voltammetric bio- and nano-sensors.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cromatografía por Intercambio Iónico/métodos , Fosfatos de Inositol/análisis , Ácido Fítico/análisis , Animales , Humanos
2.
Small ; 13(21)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28394480

RESUMEN

All-in-one material for microrocket propulsion featuring acid-based bubble generation and magnetic guidance is presented. Electrochemically deposited iron serves as both a propellant, toward highly efficient self-propulsion in acidic environments, and as a magnetic component enabling complete motion control. The new microrockets display longer lifetime and higher propulsion efficiency compared to previously reported active metal zinc-based microrockets due to the chemical properties of iron and the unique structure of the microrockets. These iron-based microrockets also demonstrate unique and attractive cargo towing and autonomous release capabilities. The latter is realized upon loss of the magnetic properties due to acid-driven iron dissolution. More interestingly, these bubble-propelled microrockets assemble via magnetic interactions into a variety of complex configurations and train structures, which enrich the behavior of micromachines. Modeling of the magnetic forces during the microrocket assembly and cargo capture confirms these unique experimentally observed assembly and cargo-towing behaviors. These findings provide a new concept of blending propellant and magnetic components into one, toward simplifying the design and fabrication of artificial micro/nanomachines, realizing new functions and capabilities for a variety of future applications.

3.
Radiol Oncol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39042833

RESUMEN

BACKGROUND: Iodine is an essential element for the synthesis of thyroid hormones. Therefore, a reliable marker of iodine supply is important. Iodine is predominantly excreted via kidneys, but also via salivary glands. Our aim was to introduce a new and simple method for determination of salivary iodine concentration (SLIC). MATERIALS AND METHODS: Self-prepared chemicals and standards for Sandell-Kolthoff reaction on microplate with ammonium peroxydisulfate (AP) in the range 0-400 µg/L were used. Suitability of water-based standards (WBS) and artificial saliva-based standards (ASS) for standard curve were tested. We followed standards for method validation, defined concentration of used AP and compared our results with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). RESULTS: WBS gave more reliable results than ASS as an underestimation of iodine concentration was found for ASS. LoB was 6.5 µg/L, LoD 12.0 µg/L, therefore analytical range was 12-400 µg/L. Intra- and inter-assay imprecisions at iodine concentrations, namely 20, 100, 165, and 350 µg/L were 18.4, 5.1, 5.7, and 2.8%, respectively, and 20.7, 6.7, 5.1, and 4.3%, respectively. Suitable molarity of AP was 1.0 mol/L and showed no difference to 1.5 mol/L (P values for samples with concentration 40, 100, and 150 µg/L, were 0.761, 0.085, and 0.275, respectively), whereas there was a significant change using 0.5 mol/L (P<0.001). Saliva samples could be diluted up to 1:8. There was no interference of thiocyanate and caffeine up to 193.5 mg/L. Our original method was comparable to ICP-MS. Spaerman coefficient was 0.989 (95% CI: 0.984-0.993). CONCLUSIONS: The new method for SLIC determination is in excellent agreement with ICP-MS and easy-to-use.

4.
Sci Total Environ ; 888: 164163, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37201834

RESUMEN

In this study, we investigated the interactions between titanium dioxide (nTiO2) and zinc oxide (nZnO) nanoparticles and polyethylene microplastics (MPs) with respect to their adsorption and subsequent desorption in aquatic media. Adsorption kinetic models revealed rapid adsorption of nZnO compared to nTiO2, while nTiO2 was adsorbed to a greater extent - four times more nTiO2 (67%) was adsorbed on MPs than nZnO (16%). The low adsorption of nZnO can be explained by the partial dissolution of zinc from nZnO in the form of Zn(II) and/or Zn(II) aqua-hydroxo complexes (e.g. [Zn(OH)]+, [Zn(OH)3]-, [Zn(OH)4]2-), which were not adsorbed on MPs. Adsorption isotherm models indicated that the adsorption process is controlled by physisorption for both nTiO2 and nZnO. The desorption of nTiO2 was low (up to 27%) and not pH dependent, and only nanoparticles were desorbed from the MPs surface. On the other hand, the desorption of nZnO was pH dependent; at a slightly acidic pH (pH = 6), 89% of the adsorbed zinc was desorbed from the MPs surface and the majority were in the form of nanoparticles; at a slightly alkaline pH (pH = 8.3), 72% of the zinc was desorbed, but the majority were in the soluble form of Zn(II) and/or Zn(II) aqua-hydroxo complexes. These results demonstrated the complexity and variability of interactions between MPs and metal engineered nanoparticles and contribute to a better understanding of their fate in the aquatic environment.

5.
Foods ; 12(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569095

RESUMEN

In the present study, the potential of elemental analysis combined with statistical tools to identify honey origin was evaluated by mineral characterization of 173 honeys of 13 floral types (acacia, fir, spruce, linden, chestnut, lavender, coriander, thistle, honeydew, rosemary, sage, euphorbia and ziziphus plant species) collected from five geographical regions (Slovenia, Croatia, Bulgaria, Turkey, and Morocco). The objective of the study was to accurately and reliably differentiate the mineral composition among honey varieties. The aim was to establish traceability, to ensure product authenticity and to improve quality control measures within the honey industry. For this purpose, 18 major, minor and trace elements were quantified using microwave digestion, followed by ICP-MS measurement. Statistical evaluation of elemental concentration was undertaken using principal component analysis (PCA) to distinguish honey floral types. The research give light on the specific elements that can serve as indicators for determining the geographical and botanical source of honey. Our findings indicate that certain elements, such as Mn, K, and Ca, are primarily influenced by the type of pollen present in the honey, making them indicative of the floral source. On the other hand, levels of Na, Mg, and Fe were found to be more strongly influenced by environmental factors and can be considered as markers of geographical origin. One novel aspect of this research is the exploration of the relationship between honey minerals and honey botanical source. This was achieved through the analysis of chestnut tree samples and a subsequent comparison with the composition of chestnut honey.

6.
J Fungi (Basel) ; 9(11)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37998891

RESUMEN

Safe drinking water is a constant challenge due to global environmental changes and the rise of emerging pathogens-lately, these also include fungi. The fungal presence in water greatly varies between sampling locations. Little is known about fungi from water in combination with a selection of materials used in water distribution systems. Our research was focused on five water plants located in the Pannonian Plain, Slovenia. Sampled water originated from different natural water sources and was subjected to different cleaning methods before distribution. The average numbers of fungi from natural water, water after disinfection, water at the first sampling point in the water network, and water at the last sampling point were 260, 49, 64, and 97 CFU/L, respectively. Chlorination reduced the number of fungi by a factor of 5, but its effect decreased with the length of the water network. The occurrence of different fungi in water and on materials depended on the choice of material. The presence of the genera Aspergillus, Acremonium, Furcasterigmium, Gliomastix, and Sarocladium was mostly observed on cement, while Cadophora, Cladosporium, Cyphellophora, and Exophiala prevailed on metals. Plastic materials were more susceptible to colonization with basidiomycetous fungi. Opportunistically pathogenic fungi were isolated sporadically from materials and water and do not represent a significant health risk for water consumers. In addition to cultivation data, physico-chemical features of water were measured and later processed with machine learning methods, revealing the sampling location and water cleaning processes as the main factors affecting fungal presence and richness in water and materials in contact with water.

7.
Chemosphere ; 329: 138628, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37030341

RESUMEN

The present study investigated the adsorption mechanism of titanium dioxide nanoparticles (nTiO2) on polyethylene microplastics (MPs) and the resulting photocatalytic properties. This effort was supported by ecotoxicological assessments of MPs with adsorbed nTiO2 on the immobility and behaviour of Daphnia magna in presence and absence of UV irradiation. The results showed that nTiO2 were rapidly adsorbed on the surface of MPs (72% of nTiO2 in 9 h). The experimental data fit well with the pseudo-second order kinetic model. Both suspended nTiO2 and nTiO2 immobilized on MPs exhibited comparable photocatalytic properties, with the latter showing a lower effect on Daphnia mobility. A likely explanation is that the suspended nTiO2 acted as a homogeneous catalyst under UV irradiation and generated hydroxyl radicals throughout the test vessel, whereas the nTiO2 adsorbed on MPs acted as a heterogeneous catalyst and generated hydroxyl radicals only locally and thus near the air-water interface. Consequently, Daphnia, which were hiding at the bottom of the test vessel, actively avoided exposure to hydroxyl radicals. These results suggest that the presence of MPs can modulate the phototoxicity of nTiO2 - at least the location at which it is active - under the studied conditions.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Polietileno/toxicidad , Adsorción , Cinética , Titanio/toxicidad , Nanopartículas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
8.
Chemosphere ; 313: 137373, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36435319

RESUMEN

Microplastics found in the environment are often covered with a biofilm, which makes their analysis difficult. Therefore, the biofilm is usually removed before analysis, which may affect the microplastic particles or lead to their loss during the procedure. In this work, we used laser-based analytical techniques and evaluated their performance in detecting, characterizing, and classifying pristine and aged microplastics with a developed biofilm. Five types of microplastics from different polymers were selected (polyamide, polyethylene, polyethylene terephthalate, polypropylene, and polyvinyl chloride) and aged under controlled conditions in freshwater and wastewater. The development of biofilm and the changes in the properties of the microplastic were evaluated. The pristine and aged microplastics were characterized by standard methods (e.g., optical and scanning electron microscopy, and Raman spectroscopy), and then laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used. The results show that LIBS could identify different types of plastics regardless of the ageing and major biotic elements of the biofilm layer. LA-ICP-MS showed a high sensitivity to metals, which can be used as markers for various plastics. In addition, LA-ICP-MS can be employed in studies to monitor the adsorption and desorption (leaching) of metals during the ageing of microplastics. The use of these laser-based analytical techniques was found to be beneficial in the study of environmentally relevant microplastics.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Polipropilenos/análisis , Metales/análisis , Rayos Láser , Biopelículas , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
9.
Cancer Chemother Pharmacol ; 90(4): 301-313, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35986742

RESUMEN

PURPOSE: Cisplatin-etoposide treatment is recommended as a first line in small cell lung cancer patients (SCLC). However, the prognosis is poor and the dosing is not tailored beyond the body surface area, which is related with indeterminate cisplatin exposure-response relationship. We aimed to evaluate cisplatin pharmacokinetics (PK) and the exposure to unbound cisplatin in SCLC patients using the informative priors, and assess the relationship between the cisplatin exposure and probability of neutropenia. METHODS: Observational clinical study was performed including 17 cisplatin-treated SCLC patients. External population cisplatin PK models were identified and NONMEM® software and $PRIOR subroutine were used for the model evaluation. The bias and precision of the model-predicted cisplatin concentrations were evaluated. The best models were combined in a final model including several sets of informative priors, which was used to estimate individual cisplatin exposure, analyze the relationship between the exposure and neutropenia and simulate several cisplatin dosing regimens in a virtual patient cohort. RESULTS: The models by Urien with the informative priors best fitted the data. The individual cisplatin exposure ranged between 2430 and 4560 µg*h/L. There was a trend of increasing probability of neutropenia and febrile neutropenia with increasing cisplatin exposure. Approximately 50%, 75% and 90% of patients receiving 60 mg/m2, 70 mg/m2 and 80 mg/m2, respectively, achieved the previously identified exposure threshold of 2860 µg*h/L. CONCLUSION: We developed a tool to individualize cisplatin dosing based on the estimated probability of neutropenia. The benefit of more intense dosing regimens in SCLC patients should be further assessed.


Asunto(s)
Neoplasias Pulmonares , Neutropenia , Carcinoma Pulmonar de Células Pequeñas , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Cisplatino , Etopósido , Humanos , Neoplasias Pulmonares/metabolismo , Neutropenia/inducido químicamente , Neutropenia/tratamiento farmacológico , Pronóstico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico
10.
J Hazard Mater ; 438: 129440, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35803191

RESUMEN

This study investigated impacts of microplastics from disposable polypropylene medical masks on woodlice Porcellio scaber, mealworm larvae Tenebrio molitor and enchytraeids Enchytraeus crypticus. Effects of microplastics on survival, reproduction, immune parameters and energy-related traits were assessed after 21 days exposure in soil. Microplastics obtained from each medical mask layer separately differed in size and shape (inner frontal layer: 45.1 ± 21.5 µm, fibers; middle filtering layer: 55.6 ± 28.5 µm, fragments; outer layer: 42.0 ± 17.8 µm, fibers) and composition of additives. Overall, the concentrations of metals and organic chemicals were too low to cause effects on soil invertebrates. The microplastics from disposable medical masks at 0.06%, 0.5%, 1.5%, w/w did not induce severe adverse effects on survival or reproduction (for enchytraeids). A transient immune response of woodlice and a change in energy-related traits in mealworms were observed, which was most clearly seen for the microplastics from the outer layer. This was reflected in increased electron transfer system activity of mealworms and different immune response dynamics of woodlice. In conclusion, the tested soil invertebrates respond to microplastics from disposable medical masks, but it remains unclear what these changes mean for their fitness on the long term.


Asunto(s)
Isópodos , Oligoquetos , Animales , Invertebrados , Máscaras , Microplásticos , Plásticos/toxicidad , Suelo/química
11.
Front Chem ; 8: 582746, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33173770

RESUMEN

The formation of metal complexes with phytic acid is a complex process that depends strongly on the metal-to-ligand molar ratio, pH value and consequent protonation level of the phytate ligand as well as accompanying side reactions, in particular metal hydrolysis and precipitation of the formed coordination compounds. In the present work, the potentiometric titration technique was used in combination with a detailed analysis of the equivalent point dependencies for selected biologically relevant monovalent and divalent cations from the groups of alkaline earths and transition metals, namely: Mg(II), Zn(II), Fe(II), Cu(I), and Cu(II) ions. The investigation of complex formation mechanism, the evaluation of the species formed, and the identification of other side reactions was based on the examination of three distinct equivalent points, which were detectable by alkalimetric titrations of phytic acid in the presence of selected metal ions. It has been demonstrated that alkaline earth metals interact with different binding site(s) than the transition metals, and experiments with both oxidation states of copper revealed similar complexing characteristics, which depend mainly on the ionic radius (and not on the ionic charge as initially expected). Quantitative data on phytate complexation, hydroxide formation and complex precipitation are presented herein for all metals studied, including Cu(I), which was investigated for the first time by means of alkalimetric titration.

12.
Water Res ; 175: 115644, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32169692

RESUMEN

Microplastics are very complex pollutants; they can be made of many polymer types and exist in various shapes and sizes. When they enter the environment they are affected by biotic and abiotic factors that cause their properties to change. In this context, the aim of our study was to evaluate the extent to which biofouling affects the properties and toxicity of microplastics. Cosmetic polyethylene microbeads were incubated in stream water for four weeks resulting in biofouling and aging. Subsequently, the changes in properties (sinking, particle size, adsorption, and leaching of model metal - silver) and the microplastics toxicity to daphnids Daphnia magna and duckweed Lemna minor were evaluated. Pristine microplastics did not affect daphnids but they significantly affected the root growth of duckweed. On the other hand, reference natural particles (beech sawdust) did not show any negative effects. We observed significant differences in the properties of aged versus pristine microplastics. When compared to pristine microplastics, aged microplastics adsorbed more silver and the subsequent leaching of silver was more intensive, especially in the medium with an acidic pH. Microplastics with adsorbed silver had a high ecotoxicological potential and at environmentally relevant concentrations affected both daphnids and duckweed. This study suggests that biofouling is an important parameter that affects microplastics properties, pollutant adsorption and release into the environment, and toxicity. Overall, there are significant alterations of the microplastics properties, behaviour, and fate in the environment.


Asunto(s)
Organismos Acuáticos , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos , Plata
13.
N Biotechnol ; 47: 67-72, 2018 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-29902527

RESUMEN

Extensive production of nanomaterials of various properties needs to be coupled with rapid toxicity testing in order to provide information about their potential risks to the environment and human health. Miniaturization of toxicity tests may accelerate economical testing of nanomaterials, but is not a common practice. We describe a case study to miniaturize a commonly used toxicity test with plant duckweed Lemna minor. 6-well, 12-well and 24-well culture plates were used to assess their potential use for the duckweed toxicity test with potassium chloride as reference material. The results were compared to the standard test design using 100 mL glass beakers. The comparison showed that the best agreement was with the 6-well vessels. This set-up was further used for toxicity testing of zinc oxide nanoparticles (ZnO NP) and zinc chloride. Zinc was not adsorbed onto either glass or plastic walls of the miniaturized system. We assume that in both vessels a fast agglomeration and settling of ZnO NP took place. Linear regression and statistical testing indicated a good correlation between the toxicity results obtained in the standard test and miniaturized 6-well vessels. The miniaturization of the test system for assessing the biological effect of nanomaterials on Lemna minor could become an appropriate alternative to the traditionally used high volume vessels.


Asunto(s)
Araceae/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Pruebas de Toxicidad/instrumentación , Zinc/toxicidad , Araceae/crecimiento & desarrollo , Biomasa , Cloruros/toxicidad , Raíces de Plantas/anatomía & histología , Compuestos de Zinc/toxicidad
14.
Acta Chim Slov ; 62(2): 319-27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26085413

RESUMEN

Determination of correct amount (concentration) of phytic acid is of vital importance when dealing with protonation and/or metal complexation equilibria. A novel approach for precise and reliable assay of phytic acid, based on the difference between end points by potentiometric titration, has been presented. Twelve phytic acid protons are classified into three groups of acidity, which enables detection of 2 to 3 distinct equivalent points (EPs) depending on experimental conditions, e.g. counter-ion concentration. Using the differences between individual EPs enables correct phytate determination as well as identification of potential contamination and/or determination of initial protonation degree. Impact of uncertainty of phytate amount on the calculation of protonation constants has been evaluated using computer simulation program (Hyperquad2013). With the analysis of titration curves different binding sites on phytate ligand have been proposed for complexation of Ca2+ and Fe3+ ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA