Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 41(38): 7924-7941, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34353897

RESUMEN

Cannabinoids, the bioactive constituents of cannabis, exert a wide array of effects on the brain by engaging Type 1 cannabinoid receptor (CB1R). Accruing evidence supports that cannabinoid action relies on context-dependent factors, such as the biological characteristics of the target cell, suggesting that cell population-intrinsic molecular cues modulate CB1R-dependent signaling. Here, by using a yeast two-hybrid-based high-throughput screening, we identified BiP as a potential CB1R-interacting protein. We next found that CB1R and BiP interact specifically in vitro, and mapped the interaction site within the CB1R C-terminal (intracellular) domain and the BiP C-terminal (substrate-binding) domain-α. BiP selectively shaped agonist-evoked CB1R signaling by blocking an "alternative" Gq/11 protein-dependent signaling module while leaving the "classical" Gi/o protein-dependent inhibition of the cAMP pathway unaffected. In situ proximity ligation assays conducted on brain samples from various genetic mouse models of conditional loss or gain of CB1R expression allowed to map CB1R-BiP complexes selectively on terminals of GABAergic neurons. Behavioral studies using cannabinoid-treated male BiP+/- mice supported that CB1R-BiP complexes modulate cannabinoid-evoked anxiety, one of the most frequent undesired effects of cannabis. Together, by identifying BiP as a CB1R-interacting protein that controls receptor function in a signaling pathway- and neuron population-selective manner, our findings may help to understand the striking context-dependent actions of cannabis in the brain.SIGNIFICANCE STATEMENT Cannabis use is increasing worldwide, so innovative studies aimed to understand its complex mechanism of neurobiological action are warranted. Here, we found that cannabinoid CB1 receptor (CB1R), the primary molecular target of the bioactive constituents of cannabis, interacts specifically with an intracellular protein called BiP. The interaction between CB1R and BiP occurs selectively on terminals of GABAergic (inhibitory) neurons, and induces a remarkable shift in the CB1R-associated signaling profile. Behavioral studies conducted in mice support that CB1R-BiP complexes act as fine-tuners of anxiety, one of the most frequent undesired effects of cannabis use. Our findings open a new conceptual framework to understand the striking context-dependent pharmacological actions of cannabis in the brain.


Asunto(s)
Encéfalo/metabolismo , Cannabinoides/metabolismo , Neuronas GABAérgicas/metabolismo , Proteínas de Choque Térmico/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal/fisiología , Animales , Chaperón BiP del Retículo Endoplásmico , Células HEK293 , Proteínas de Choque Térmico/genética , Humanos , Ratones , Ratones Noqueados , Receptor Cannabinoide CB1/genética
2.
Cereb Cortex ; 28(1): 307-322, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29121220

RESUMEN

The vast majority of neurons within the striatum are GABAergic medium spiny neurons (MSNs), which receive glutamatergic input from the cortex and thalamus, and form two major efferent pathways: the direct pathway, expressing dopamine D1 receptor (D1R-MSNs), and the indirect pathway, expressing dopamine D2 receptor (D2R-MSNs). While molecular mechanisms of MSN degeneration have been identified in animal models of striatal damage, the molecular factors that dictate a selective vulnerability of D1R-MSNs or D2R-MSNs remain unknown. Here, we combined genetic, chemogenetic, and pharmacological strategies with behavioral and neurochemical analyses, and show that the pool of cannabinoid CB1 receptor (CB1R) located on corticostriatal terminals efficiently safeguards D1R-MSNs, but not D2R-MSNs, from different insults. This cell-specific response relies on the regulation of glutamatergic signaling, and is independent from the CB1R-dependent control of astroglial activity in the striatum. These findings define cortical CB1R as a pivotal synaptic player in dictating a differential vulnerability of D1R-MSNs versus D2R-MSNs, and increase our understanding of the role of coordinated cannabinergic-glutamatergic signaling in establishing corticostriatal circuits and its dysregulation in neurodegenerative diseases.


Asunto(s)
Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Vectores Genéticos , Ácido Glutámico/metabolismo , Humanos , Proteína Huntingtina/administración & dosificación , Proteína Huntingtina/genética , Proteína Huntingtina/toxicidad , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Masculino , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/patología , Receptor Cannabinoide CB1/genética , Transmisión Sináptica/fisiología
3.
EMBO Mol Med ; 16(4): 755-783, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514794

RESUMEN

Cereblon/CRBN is a substrate-recognition component of the Cullin4A-DDB1-Roc1 E3 ubiquitin ligase complex. Destabilizing mutations in the human CRBN gene cause a form of autosomal recessive non-syndromic intellectual disability (ARNSID) that is modelled by knocking-out the mouse Crbn gene. A reduction in excitatory neurotransmission has been proposed as an underlying mechanism of the disease. However, the precise factors eliciting this impairment remain mostly unknown. Here we report that CRBN molecules selectively located on glutamatergic neurons are necessary for proper memory function. Combining various in vivo approaches, we show that the cannabinoid CB1 receptor (CB1R), a key suppressor of synaptic transmission, is overactivated in CRBN deficiency-linked ARNSID mouse models, and that the memory deficits observed in these animals can be rescued by acute CB1R-selective pharmacological antagonism. Molecular studies demonstrated that CRBN interacts physically with CB1R and impairs the CB1R-Gi/o-cAMP-PKA pathway in a ubiquitin ligase-independent manner. Taken together, these findings unveil that CB1R overactivation is a driving mechanism of CRBN deficiency-linked ARNSID and anticipate that the antagonism of CB1R could constitute a new therapy for this orphan disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Trastornos de la Memoria , Ubiquitina-Proteína Ligasas , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mutación , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo
4.
Neuropharmacology ; 240: 109712, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37689260

RESUMEN

Cannabinoids exert pleiotropic effects on the brain by engaging the cannabinoid CB1 receptor (CB1R), a presynaptic metabotropic receptor that regulates key neuronal functions in a highly context-dependent manner. We have previously shown that CB1R interacts with growth-associated protein of 43 kDa (GAP43) and that this interaction inhibits CB1R function on hippocampal excitatory synaptic transmission, thereby impairing the therapeutic effect of cannabinoids on epileptic seizures in vivo. However, the underlying molecular features of this interaction remain unexplored. Here, we conducted mechanistic experiments on HEK293T cells co-expressing CB1R and GAP43 and show that GAP43 modulates CB1R signalling in a strikingly selective manner. Specifically, GAP43 did not affect the archetypical agonist-evoked (i) CB1R/Gi/o protein-coupled signalling pathways, such as cAMP/PKA and ERK, or (ii) CB1R internalization and intracellular trafficking. In contrast, GAP43 blocked an alternative agonist-evoked CB1R-mediated activation of the cytoskeleton-associated ROCK signalling pathway, which relied on the GAP43-mediated impairment of CB1R/Gq/11 protein coupling. GAP43 also abrogated CB1R-mediated ROCK activation in mouse hippocampal neurons, and this process led in turn to a blockade of cannabinoid-evoked neurite collapse. An NMR-based characterization of the CB1R-GAP43 interaction supported that GAP43 binds directly and specifically through multiple amino acid stretches to the C-terminal domain of the receptor. Taken together, our findings unveil a CB1R-Gq/11-ROCK signalling axis that is selectively impaired by GAP43 and may ultimately control neurite outgrowth.

5.
Nat Commun ; 14(1): 2303, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085487

RESUMEN

The type-1 cannabinoid receptor (CB1R) is widely expressed in excitatory and inhibitory nerve terminals, and by suppressing neurotransmitter release, its activation modulates neural circuits and brain function. While the interaction of CB1R with various intracellular proteins is thought to alter receptor signaling, the identity and role of these proteins are poorly understood. Using a high-throughput proteomic analysis complemented with an array of in vitro and in vivo approaches in the mouse brain, we report that the C-terminal, intracellular domain of CB1R interacts specifically with growth-associated protein of 43 kDa (GAP43). The CB1R-GAP43 interaction occurs selectively at mossy cell axon boutons, which establish excitatory synapses with dentate granule cells in the hippocampus. This interaction impairs CB1R-mediated suppression of mossy cell to granule cell transmission, thereby inhibiting cannabinoid-mediated anti-convulsant activity in mice. Thus, GAP43 acts as a synapse type-specific regulatory partner of CB1R that hampers CB1R-mediated effects on hippocampal circuit function.


Asunto(s)
Cannabinoides , Ratones , Animales , Cannabinoides/farmacología , Cannabinoides/metabolismo , Proteómica , Hipocampo/metabolismo , Transmisión Sináptica , Sinapsis/metabolismo , Receptores de Cannabinoides/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo
6.
Elife ; 102021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33792539

RESUMEN

Insulin-like growth factor-1 (IGF-1) plays a key role in synaptic plasticity, spatial learning, and anxiety-like behavioral processes. While IGF-1 regulates neuronal firing and synaptic transmission in many areas of the central nervous system, its signaling and consequences on excitability, synaptic plasticity, and animal behavior dependent on the prefrontal cortex remain unexplored. Here, we show that IGF-1 induces a long-lasting depression of the medium and slow post-spike afterhyperpolarization (mAHP and sAHP), increasing the excitability of layer 5 pyramidal neurons of the rat infralimbic cortex. Besides, IGF-1 mediates a presynaptic long-term depression of both inhibitory and excitatory synaptic transmission in these neurons. The net effect of this IGF-1-mediated synaptic plasticity is a long-term potentiation of the postsynaptic potentials. Moreover, we demonstrate that IGF-1 favors the fear extinction memory. These results show novel functional consequences of IGF-1 signaling, revealing IGF-1 as a key element in the control of the fear extinction memory.


Asunto(s)
Excitabilidad Cortical/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Plasticidad Neuronal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Animales , Condicionamiento Clásico , Masculino , Ratas , Ratas Sprague-Dawley
7.
Neuropharmacology ; 150: 134-144, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30914306

RESUMEN

Cannabinoids exert neuroprotection in a wide array of preclinical models. A number of these studies has focused on cannabinoid CB1 receptors in striatal medium spiny neurons (MSNs) and the most characteristic MSN-degenerative disease, Huntington's disease (HD). Accruing evidence supports that astrocytes contribute to drive HD progression, and that they express CB1 receptors, degrade endocannabinoids, and modulate endocannabinergic transmission. However, the possible role of the astroglial endocannabinoid system in controlling MSN integrity remains unknown. Here, we show that JZL-184, a selective inhibitor of monoacylglycerol lipase (MGL), the key enzyme that deactivates the endocannabinoid 2-arachidonoylglycerol, prevented the mutant huntingtin-induced up-regulation of the pro-inflammatory cytokine tumor necrosis factor-α in primary mouse striatal astrocytes via CB1 receptors. To study the role of astroglial MGL in vivo, we injected stereotactically into the mouse dorsal striatum viral vectors that encode mutant or normal huntingtin under the control of the glial fibrillary acidic protein promoter. We observed that, in wild-type mice, pharmacological blockade of MGL with JZL-184 (8 mg/kg/day, i.p.) conferred neuroprotection against mutant huntingtin-induced striatal damage, as evidenced by the prevention of MSN loss, astrogliosis, and motor coordination impairment. We next found that conditional mutant mice bearing a genetic deletion of MGL selectively in astroglial cells (MGLfloxed/floxed;GFAP-Cre/+ mice) were resistant to mutant huntingtin-induced MSN loss, astrogliosis, and motor coordination impairment. Taken together, these data support that astroglial MGL controls the availability of a 2-arachidonoylglycerol pool that ensues protection of MSNs in the mouse striatum in vivo, thus providing a potential druggable target for reducing striatal neurodegeneration.


Asunto(s)
Astrocitos/metabolismo , Cuerpo Estriado/metabolismo , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Monoacilglicerol Lipasas/metabolismo , Neuronas/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Benzodioxoles/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Enfermedad de Huntington/patología , Ratones , Monoacilglicerol Lipasas/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/patología , Piperidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA