Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BJU Int ; 120(5B): E30-E44, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-27539393

RESUMEN

OBJECTIVES: To use a non-biased assay for circulating tumour cells (CTCs) in patients with prostate cancer (PCa) in order to identify non-traditional CTC phenotypes potentially excluded by conventional detection methods that are reliant on antigen- and/or size-based enrichment. PATIENTS AND METHODS: A total of 41 patients with metastatic castration-resistant PCa (mCRPC) and 20 healthy volunteers were analysed on the Epic CTC platform, via high-throughput imaging of DAPI expression and CD45/cytokeratin (CK) immunofluorescence (IF) on all circulating nucleated cells plated on glass slides. To confirm the PCa origin of CTCs, IF was used for androgen receptor (AR) expression and fluorescence in situ hybridization was used for PTEN and ERG assessment. RESULTS: Traditional CTCs (CD45- /CK+ /morphologically distinct) were identified in all patients with mCRPC and we also identified CTC clusters and non-traditional CTCs in patients with mCRPC, including CK- and apoptotic CTCs. Small CTCs (≤white blood cell size) were identified in 98% of patients with mCRPC. Total, traditional and non-traditional CTCs were significantly increased in patients who were deceased vs alive after 18 months; however, only non-traditional CTCs were associated with overall survival. Traditional and total CTC counts according to the Epic platform in the mCRPC cohort were also significantly correlated with CTC counts according to the CellSearch system. CONCLUSIONS: Heterogeneous non-traditional CTC populations are frequent in mCRPC and may provide additional prognostic or predictive information.


Asunto(s)
Metástasis de la Neoplasia/patología , Células Neoplásicas Circulantes/patología , Neoplasias de la Próstata Resistentes a la Castración/sangre , Neoplasias de la Próstata Resistentes a la Castración/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Progresión de la Enfermedad , Humanos , Hibridación Fluorescente in Situ , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia/genética , Fosfohidrolasa PTEN/sangre , Fosfohidrolasa PTEN/genética , Fenotipo , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Receptores Androgénicos/genética
2.
Br J Cancer ; 113(8): 1225-33, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26379078

RESUMEN

BACKGROUND: PTEN gene loss occurs frequently in castration-resistant prostate cancer (CRPC) and may drive progression through activation of the PI3K/AKT pathway. Here, we developed a novel CTC-based assay to determine PTEN status and examined the correlation between PTEN status in CTCs and matched tumour tissue samples. METHODS: PTEN gene status in CTCs was evaluated on an enrichment-free platform (Epic Sciences) by fluorescence in situ hybridisation (FISH). PTEN status in archival and fresh tumour tissue was evaluated by FISH and immunohistochemistry. RESULTS: Peripheral blood was collected from 76 patients. Matched archival and fresh cancer tissue was available for 48 patients. PTEN gene status detected in CTCs was concordant with PTEN status in matched fresh tissues and archival tissue in 32 of 38 patients (84%) and 24 of 39 patients (62%), respectively. CTC counts were prognostic (continuous, P=0.001). PTEN loss in CTCs associated with worse survival in univariate analysis (HR 2.05; 95% CI 1.17-3.62; P=0.01) and with high lactate dehydrogenase (LDH) in metastatic CRPC patients. CONCLUSIONS: Our results illustrate the potential use of CTCs as a non-invasive, real-time liquid biopsy to determine PTEN gene status. The prognostic and predictive value of PTEN in CTCs warrants investigation in CRPC clinical trials of PI3K/AKT-targeted therapies.


Asunto(s)
Células Neoplásicas Circulantes/patología , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Anciano , Progresión de la Enfermedad , Humanos , Inmunohistoquímica/métodos , Hibridación Fluorescente in Situ/métodos , L-Lactato Deshidrogenasa/genética , Masculino , Fosfatidilinositol 3-Quinasas/genética , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo
3.
Nature ; 449(7165): 1033-6, 2007 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-17960240

RESUMEN

The ability of mass spectrometry to generate intact biomolecular ions efficiently in the gas phase has led to its widespread application in metabolomics, proteomics, biological imaging, biomarker discovery and clinical assays (namely neonatal screens). Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization have been at the forefront of these developments. However, matrix application complicates the use of MALDI for cellular, tissue, biofluid and microarray analysis and can limit the spatial resolution because of the matrix crystal size (typically more than 10 mum), sensitivity and detection of small compounds (less than 500 Da). Secondary-ion mass spectrometry has extremely high lateral resolution (100 nm) and has found biological applications although the energetic desorption/ionization is a limitation owing to molecular fragmentation. Here we introduce nanostructure-initiator mass spectrometry (NIMS), a tool for spatially defined mass analysis. NIMS uses 'initiator' molecules trapped in nanostructured surfaces or 'clathrates' to release and ionize intact molecules adsorbed on the surface. This surface responds to both ion and laser irradiation. The lateral resolution (ion-NIMS about 150 nm), sensitivity, matrix-free and reduced fragmentation of NIMS allows direct characterization of peptide microarrays, direct mass analysis of single cells, tissue imaging, and direct characterization of blood and urine.


Asunto(s)
Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Nanoestructuras , Adsorción , Animales , Análisis Químico de la Sangre , Neoplasias de la Mama/química , Neoplasias de la Mama/patología , Línea Celular Tumoral , Embrión de Mamíferos/química , Iones/química , Rayos Láser , Ratones , Microscopía Electrónica de Rastreo , Nanoestructuras/química , Análisis por Matrices de Proteínas , Sensibilidad y Especificidad , Orina/química
4.
Phys Biol ; 9(1): 016001, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22306705

RESUMEN

Circulating tumor cells (CTCs) have been implicated as a population of cells that may seed metastasis and venous thromboembolism (VTE), two major causes of mortality in cancer patients. Thus far, existing CTC detection technologies have been unable to reproducibly detect CTC aggregates in order to address what contribution CTC aggregates may make to metastasis or VTE. We report here an enrichment-free immunofluorescence detection method that can reproducibly detect and enumerate homotypic CTC aggregates in patient samples. We identified CTC aggregates in 43% of 86 patient samples. The fraction of CTC aggregation was investigated in blood draws from 24 breast, 14 non-small cell lung, 18 pancreatic, 15 prostate stage IV cancer patients and 15 normal blood donors. Both single CTCs and CTC aggregates were measured to determine whether differences exist in the physical characteristics of these two populations. Cells contained in CTC aggregates had less area and length, on average, than single CTCs. Nuclear to cytoplasmic ratios between single CTCs and CTC aggregates were similar. This detection method may assist future studies in determining which population of cells is more physically likely to contribute to metastasis and VTE.


Asunto(s)
Neoplasias Glandulares y Epiteliales/diagnóstico , Neoplasias Glandulares y Epiteliales/patología , Células Neoplásicas Circulantes/patología , Adulto , Estudios de Cohortes , Femenino , Técnica del Anticuerpo Fluorescente/métodos , Humanos , Interpretación de Imagen Asistida por Computador , Indoles/química , Queratinas/química , Metástasis de la Neoplasia/diagnóstico , Metástasis de la Neoplasia/patología , Neoplasias Glandulares y Epiteliales/metabolismo , Células Neoplásicas Circulantes/metabolismo
5.
Phys Biol ; 9(1): 016004, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22306961

RESUMEN

Sampling circulating tumor cells (CTCs) from peripheral blood is ideally accomplished using assays that detect high numbers of cells and preserve them for downstream characterization. We sought to evaluate a method using enrichment free fluorescent labeling of CTCs followed by automated digital microscopy in patients with non-small cell lung cancer. Twenty-eight patients with non-small cell lung cancer and hematogenously seeded metastasis were analyzed with multiple blood draws. We detected CTCs in 68% of analyzed samples and found a propensity for increased CTC detection as the disease progressed in individual patients. CTCs were present at a median concentration of 1.6 CTCs ml⁻¹ of analyzed blood in the patient population. Higher numbers of detected CTCs were associated with an unfavorable prognosis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Células Neoplásicas Circulantes/patología , Adulto , Anciano , Biopsia , Carcinoma de Pulmón de Células no Pequeñas/sangre , Separación Celular , Progresión de la Enfermedad , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Interpretación de Imagen Asistida por Computador , Estudios Longitudinales , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico , Masculino , Microscopía , Persona de Mediana Edad , Siembra Neoplásica , Células Neoplásicas Circulantes/metabolismo , Pronóstico
6.
Phys Biol ; 9(1): 016005, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22307026

RESUMEN

Circulating tumor cell (CTC) counts are an established prognostic marker in metastatic prostate, breast and colorectal cancer, and recent data suggest a similar role in late stage non-small cell lung cancer (NSCLC). However, due to sensitivity constraints in current enrichment-based CTC detection technologies, there are few published data about CTC prevalence rates and morphologic heterogeneity in early-stage NSCLC, or the correlation of CTCs with disease progression and their usability for clinical staging. We investigated CTC counts, morphology and aggregation in early stage, locally advanced and metastatic NSCLC patients by using a fluid-phase biopsy approach that identifies CTCs without relying on surface-receptor-based enrichment and presents them in sufficiently high definition (HD) to satisfy diagnostic pathology image quality requirements. HD-CTCs were analyzed in blood samples from 78 chemotherapy-naïve NSCLC patients. 73% of the total population had a positive HD-CTC count (>0 CTC in 1 mL of blood) with a median of 4.4 HD-CTCs mL⁻¹ (range 0-515.6) and a mean of 44.7 (±95.2) HD-CTCs mL⁻¹. No significant difference in the medians of HD-CTC counts was detected between stage IV (n = 31, range 0-178.2), stage III (n = 34, range 0-515.6) and stages I/II (n = 13, range 0-442.3). Furthermore, HD-CTCs exhibited a uniformity in terms of molecular and physical characteristics such as fluorescent cytokeratin intensity, nuclear size, frequency of apoptosis and aggregate formation across the spectrum of staging. Our results demonstrate that despite stringent morphologic inclusion criteria for the definition of HD-CTCs, the HD-CTC assay shows high sensitivity in the detection and characterization of both early- and late-stage lung cancer CTCs. Extensive studies are warranted to investigate the prognostic value of CTC profiling in early-stage lung cancer. This finding has implications for the design of extensive studies examining screening, therapy and surveillance in lung cancer patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Células Neoplásicas Circulantes/patología , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Carcinoma de Pulmón de Células no Pequeñas/sangre , Progresión de la Enfermedad , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Queratinas/metabolismo , Neoplasias Pulmonares/sangre , Masculino , Persona de Mediana Edad , Células Neoplásicas Circulantes/clasificación , Pronóstico
7.
Phys Biol ; 9(1): 016003, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22306768

RESUMEN

Hematologic spread of carcinoma results in incurable metastasis; yet, the basic characteristics and travel mechanisms of cancer cells in the bloodstream are unknown. We have established a fluid phase biopsy approach that identifies circulating tumor cells (CTCs) without using surface protein-based enrichment and presents them in sufficiently high definition (HD) to satisfy diagnostic pathology image quality requirements. This 'HD-CTC' assay finds >5 HD-CTCs mL(-1) of blood in 80% of patients with metastatic prostate cancer (n = 20), in 70% of patients with metastatic breast cancer (n = 30), in 50% of patients with metastatic pancreatic cancer (n = 18), and in 0% of normal controls (n = 15). Additionally, it finds HD-CTC clusters ranging from 2 HD-CTCs to greater than 30 HD-CTCs in the majority of these cancer patients. This initial validation of an enrichment-free assay demonstrates our ability to identify significant numbers of HD-CTCs in a majority of patients with prostate, breast and pancreatic cancers.


Asunto(s)
Biopsia/métodos , Neoplasias de la Mama/patología , Células Neoplásicas Circulantes/patología , Neoplasias Pancreáticas/patología , Neoplasias de la Próstata/patología , Adulto , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Queratinas/metabolismo , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad , Adulto Joven
8.
PLoS One ; 16(3): e0247797, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33661960

RESUMEN

Since the initial identification of the novel coronavirus SARS-CoV-2 in December of 2019, researchers have raced to understand its pathogenesis and begun devising vaccine and treatment strategies. An accurate understanding of the body's temporal immune response against SARS-CoV-2 is paramount to successful vaccine development and disease progression monitoring. To provide insight into the antibody response against SARS-CoV-2, plasma samples from 181 PCR-confirmed COVID-19 patients collected at various timepoints post-symptom onset (PSO) were tested for the presence of anti-SARS-CoV-2 IgM and IgG antibodies via lateral flow. Additionally, 21 donors were tracked over time to elucidate patient-specific immune responses. We found sustained levels of anti-SARS-CoV-2 antibodies past 130 days PSO, with 99% positivity observed at 31-60 days PSO. By 61-90 days PSO, the percentage of IgM-/IgG+ results were nearly equal to that of IgM+/IgG+ results, demonstrating a shift in the immune response with a decrease in IgM antibody levels. Results from this study not only provide evidence that the antibody response to COVID-19 can persist for over 4 months, but also demonstrates the ability of Easy Check™ to monitor seroconversion and antibody response of patients. Easy Check was sufficiently sensitive to detect antibodies in patient samples as early as 1-4 days PSO with 86% positivity observed at 5-7 days PSO. Further studies are required to determine the longevity and efficacy of anti-SARS-CoV-2 antibodies, and whether they are protective against re-infection.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Prueba Serológica para COVID-19/instrumentación , Prueba Serológica para COVID-19/métodos , Diseño de Equipo , Femenino , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificación , Adulto Joven
9.
Hum Pathol ; 38(3): 514-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17188328

RESUMEN

We report a detailed cytomorphologic evaluation of the circulating component of widely metastatic breast carcinoma. A previously healthy 38-year-old woman was diagnosed with breast cancer. Wide local excision revealed a 1.7-cm infiltrating ductal adenocarcinoma, BSR score 7/9 with angiolymphatic invasion, and 4/20 lymph nodes positive for carcinoma. Five years later, a bone marrow biopsy revealed involvement of bone marrow by metastatic breast carcinoma, and shortly thereafter, metastases were identified in the liver and lung hilum. She enrolled in a clinical investigation for the detection of circulating tumor cells (CTCs) in breast carcinoma. A total of 659 CTCs were identified in a 10-mL blood sample using an immunofluorescent protocol targeting cytokeratins and detected using fiber-optic array scanning technology. The detected CTCs were subsequently stained with a Wright-Giemsa stain, and representative cells were evaluated in detail by light microscopy for morphologic evaluation. We find that the patient's CTCs exhibit a high degree of pleomorphism including CTCs with high and low nuclear-to-cytoplasmic ratios along with CTCs exhibiting early and late apoptotic changes. In addition, in comparison with her tumor cells in other sites, the full morphologic spectrum of cancer cells present in primary and metastatic tumor is also present in peripheral blood circulation.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Células Neoplásicas Circulantes/patología , Adulto , Citofotometría , Resultado Fatal , Femenino , Tecnología de Fibra Óptica , Humanos , Fibras Ópticas
10.
PLoS One ; 12(7): e0179561, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28727782

RESUMEN

The fetal oncogene 5T4 is a cell surface protein, with overexpression observed in a variety of cancers as compared to normal adult tissue. The ability to select patients with tumors that express high levels of 5T4 may enrich a clinical trial cohort with patients most likely to respond to 5T4 targeted therapy. To that end, we developed assays to measure 5T4 in both tumors and in circulating tumor cells (CTCs). We identified the presence of 5T4 in both adenocarcinoma and squamous cell carcinoma of lung, in all clinical stages and grades of disease. CTCs were identified in peripheral blood from the majority of patients with NSCLC, and 5T4 was detectable in most samples. Although 5T4 was present in both CTCs and tumors in most patients, there was no concordance between relative amount in either sample type. Clinical response rates of patients treated with the therapies directed against 5T4 in early stage clinical trials, as determined by these assays, may provide important insights into the biology of 5T4 in tumors and the mechanisms of action of 5T4-targeting therapy.


Asunto(s)
Adenocarcinoma/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Pulmonares/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Neoplásicas Circulantes/metabolismo , Adenocarcinoma/patología , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/patología , Masculino , Ratones , Trasplante de Neoplasias , Células Neoplásicas Circulantes/patología
11.
Biosens Bioelectron ; 21(10): 1893-9, 2006 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-16464570

RESUMEN

Epithelial tumor cells circulate in peripheral blood at ultra-low concentrations in cancer patients. We have developed an instrument capable of rapid and accurate detection of rare cells in circulation utilizing fiber-optic array scanning technology (FAST). The FAST cytometer can locate immunofluorescently labeled rare cells on glass substrates at scan rates 500 times faster than conventional automated digital microscopy. These high scan rates are achieved by collecting fluorescent emissions using a fiber bundle with a large (50 mm) field of view. Very high scan rates make possible the ability to detect rare events without the requirement for an enrichment step. The FAST cytometer was used to detect, image and re-image circulating tumor cells in peripheral blood of breast cancer patients. This technology has the potential to serve as a clinically useful point-of-care diagnostic and a prognostic tool for cancer clinicians. The use of a fixed substrate permits the re-identification and re-staining of cells allowing for additional morphologic and biologic information to be obtained from previously collected and identified cells.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Tecnología de Fibra Óptica , Rayos Láser , Células Neoplásicas Circulantes/patología , Neoplasias de la Mama/patología , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Pronóstico
12.
J Circ Biomark ; 5: 10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28936258

RESUMEN

Multiple myeloma (MM) remains an incurable disease despite recent therapeutic improvements. The ability to detect and characterize MM circulating tumour cells (CTCs) in peripheral blood provides an alternative to replace or augment invasive bone marrow (BM) biopsies with a simple blood draw, providing real-time, clinically relevant information leading to improved disease management and therapy selection. Here we have developed and qualified an enrichment-free, cell-based immunofluorescence MM CTC assay that utilizes an automated digital pathology algorithm to distinguish MM CTCs from white blood cells (WBCs) on the basis of CD138 and CD45 expression levels, as well as a number of morphological parameters. These MM CTCs were further characterized for expression of phospho-ribosomal protein S6 (pS6) as a readout for PI3K/AKT pathway activation. Clinical feasibility of the assay was established by testing blood samples from a small cohort of patients, where we detected populations of both CD138pos and CD138neg MM CTCs. In this study, we developed an immunofluorescent cell-based assay to detect and characterize CTCs in MM.

13.
Clin Cancer Res ; 22(6): 1510-9, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26671992

RESUMEN

PURPOSE: The transition of prostate adenocarcinoma to a predominantly androgen receptor (AR) signaling independent phenotype can occur in the later stages of the disease and is associated with low AR expression +/- the development of small-cell or neuroendocrine tumor characteristics. As metastatic tumor biopsies are not always feasible and are difficult to repeat, we sought to evaluate noninvasive methods to identify patients transitioning toward a neuroendocrine phenotype (NEPC). EXPERIMENTAL DESIGN: We prospectively studied a metastatic tumor biopsy, serum biomarkers, and circulating tumor cells (CTC, Epic Sciences) from patients with castration-resistant prostate cancer (CRPC) including those with pure or mixed NEPC histology present on biopsy. CTCs labeled with the patient's clinical status were used to learn features that discriminate NEPC patients, which was then applied to an independent cohort. RESULTS: Twenty-seven patients with CRPC including 12 NEPC and 5 with atypical clinical features suggestive of NEPC transition were studied. CTCs from NEPC patients demonstrated frequent clusters, low or absent AR expression, lower cytokeratin expression, and smaller morphology relative to typical CRPC. A multivariate analysis of protein and morphologic variables enabled distinguishing CTCs of NEPC from CRPC. This CTC classifier was applied to an independent prospective cohort of 159 metastatic CRPC patients and identified in 17/159 (10.7%) of cases, enriched in patients with high CTC burden (P < 0.01) and visceral metastases (P = 0.04). CONCLUSIONS: CTCs from patients with NEPC have unique morphologic characteristics, which were also identified in a subset of CRPC patients with aggressive clinical features potentially undergoing NEPC transition.


Asunto(s)
Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Tumores Neuroendocrinos/diagnóstico , Tumores Neuroendocrinos/metabolismo , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/metabolismo , Biomarcadores , Biopsia , Estudios de Cohortes , Humanos , Inmunohistoquímica , Inmunofenotipificación , Masculino , Metástasis de la Neoplasia , Tumores Neuroendocrinos/terapia , Neoplasias de la Próstata/terapia , Reproducibilidad de los Resultados
14.
JAMA Oncol ; 2(11): 1441-1449, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27262168

RESUMEN

IMPORTANCE: A critical decision in the management of metastatic castration-resistant prostate cancer (mCRPC) is when to administer an androgen receptor signaling (ARS) inhibitor or a taxane. OBJECTIVE: To determine if pretherapy nuclear androgen-receptor splice variant 7 (AR-V7) protein expression and localization on circulating tumor cells (CTCs) is a treatment-specific marker for response and outcomes between ARS inhibitors and taxanes. DESIGN, SETTING, AND PARTICIPANTS: For this cross-sectional cohort study at Memorial Sloan Kettering Cancer Center, 265 men with progressive mCRPC undergoing a change in treatment were considered; 86 were excluded because they were not initiating ARS or taxane therapy; and 18 were excluded for processing time constraints, leaving 161 patients for analysis. Between December 2012 and March 2015, blood was collected and processed from patients with progressive mCRPC immediately prior to new line of systemic therapy. Patients were followed up to 3 years. MAIN OUTCOMES AND MEASURES: Prostate-specific antigen (PSA) response, time receiving therapy, radiographic progression-free survival (rPFS), and overall survival (OS). RESULTS: Overall, of 193 prospectively collected blood samples from 161 men with mCRPC, 191 were evaluable (128 pre-ARS inhibitor and 63 pretaxane). AR-V7-positive CTCs were found in 34 samples (18%), including 3% of first-line, 18% of second-line, and 31% of third- or greater line samples. Patients whose samples had AR-V7-positive CTCs before ARS inhibition had resistant posttherapy PSA changes (PTPC), shorter rPFS, shorter time on therapy, and shorter OS than those without AR-V7-positive CTCs. Overall, resistant PTPC were seen in 65 of 112 samples (58%) without detectable AR-V7-positive CTCs prior to ARS inhibition. There were statistically significant differences in OS but not in PTPC, time on therapy, or rPFS for patients with or without pretherapy AR-V7-positive CTCs treated with a taxane. A multivariable model adjusting for baseline factors associated with survival showed superior OS with taxanes relative to ARS inhibitors when AR-V7-positive CTCs were detected pretherapy (hazard ratio, 0.24; 95% CI, 0.10-0.57; P = .035). CONCLUSIONS AND RELEVANCE: The results validate CTC nuclear expression of AR-V7 protein in men with mCRPC as a treatment-specific biomarker that is associated with superior survival on taxane therapy over ARS-directed therapy in a clinical practice setting. Continued examination of this biomarker in prospective studies will further aid clinical utility.


Asunto(s)
Células Neoplásicas Circulantes/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/sangre , Receptores Androgénicos/metabolismo , Anciano , Anciano de 80 o más Años , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor , Estudios Transversales , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Humanos , Calicreínas/sangre , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico , Neoplasias de la Próstata Resistentes a la Castración/mortalidad , Neoplasias de la Próstata Resistentes a la Castración/terapia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Androgénicos/genética , Sensibilidad y Especificidad , Taxoides/farmacología , Taxoides/uso terapéutico , Resultado del Tratamiento
15.
PLoS One ; 11(11): e0165089, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27851748

RESUMEN

Genomic instability is a hallmark of cancer often associated with poor patient outcome and resistance to targeted therapy. Assessment of genomic instability in bulk tumor or biopsy can be complicated due to sample availability, surrounding tissue contamination, or tumor heterogeneity. The Epic Sciences circulating tumor cell (CTC) platform utilizes a non-enrichment based approach for the detection and characterization of rare tumor cells in clinical blood samples. Genomic profiling of individual CTCs could provide a portrait of cancer heterogeneity, identify clonal and sub-clonal drivers, and monitor disease progression. To that end, we developed a single cell Copy Number Variation (CNV) Assay to evaluate genomic instability and CNVs in patient CTCs. For proof of concept, prostate cancer cell lines, LNCaP, PC3 and VCaP, were spiked into healthy donor blood to create mock patient-like samples for downstream single cell genomic analysis. In addition, samples from seven metastatic castration resistant prostate cancer (mCRPC) patients were included to evaluate clinical feasibility. CTCs were enumerated and characterized using the Epic Sciences CTC Platform. Identified single CTCs were recovered, whole genome amplified, and sequenced using an Illumina NextSeq 500. CTCs were then analyzed for genome-wide copy number variations, followed by genomic instability analyses. Large-scale state transitions (LSTs) were measured as surrogates of genomic instability. Genomic instability scores were determined reproducibly for LNCaP, PC3, and VCaP, and were higher than white blood cell (WBC) controls from healthy donors. A wide range of LST scores were observed within and among the seven mCRPC patient samples. On the gene level, loss of the PTEN tumor suppressor was observed in PC3 and 5/7 (71%) patients. Amplification of the androgen receptor (AR) gene was observed in VCaP cells and 5/7 (71%) mCRPC patients. Using an in silico down-sampling approach, we determined that DNA copy number and genomic instability can be detected with as few as 350K sequencing reads. The data shown here demonstrate the feasibility of detecting genomic instabilities at the single cell level using the Epic Sciences CTC Platform. Understanding CTC heterogeneity has great potential for patient stratification prior to treatment with targeted therapies and for monitoring disease evolution during treatment.


Asunto(s)
Inestabilidad Cromosómica/genética , Variaciones en el Número de Copia de ADN/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de la Célula Individual/métodos , Línea Celular Tumoral , Biblioteca de Genes , Inestabilidad Genómica , Genómica , Humanos , Hibridación Fluorescente in Situ , Masculino , Células Neoplásicas Circulantes/patología , Fosfohidrolasa PTEN/genética , Receptores Androgénicos/genética , Reproducibilidad de los Resultados
16.
J Circ Biomark ; 4: 3, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-28936239

RESUMEN

The Epic Platform was developed for the unbiased detection and molecular characterization of circulating tumour cells (CTCs). Here, we report assay performance data, including accuracy, linearity, specificity and intra/inter-assay precision of CTC enumeration in healthy donor (HD) blood samples spiked with varying concentrations of cancer cell line controls (CLCs). Additionally, we demonstrate clinical feasibility for CTC detection in a small cohort of metastatic castrate-resistant prostate cancer (mCRPC) patients. The Epic Platform demonstrated accuracy, linearity and sensitivity for the enumeration of all CLC concentrations tested. Furthermore, we established the precision between multiple operators and slide staining batches and assay specificity showing zero CTCs detected in 18 healthy donor samples. In a clinical feasibility study, at least one traditional CTC/mL (CK+, CD45-, and intact nuclei) was detected in 89 % of 44 mCRPC samples, whereas 100 % of samples had CTCs enumerated if additional CTC subpopulations (CK-/CD45- and CK+ apoptotic CTCs) were included in the analysis. In addition to presenting Epic Platform's performance with respect to CTC enumeration, we provide examples of its integrated downstream capabilities, including protein biomarker expression and downstream genomic analyses at single cell resolution.

17.
J Circ Biomark ; 4: 4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-28936240

RESUMEN

Retrospective analysis of patient tumour samples is a cornerstone of clinical research. CTC biomarker characterization offers a non-invasive method to analyse patient samples. However, current CTC technologies require prospective blood collection, thereby reducing the ability to utilize archived clinical cohorts with long-term outcome data. We sought to investigate CTC recovery from frozen, archived patient PBMC pellets. Matched samples from both mCRPC patients and mock samples, which were prepared by spiking healthy donor blood with cultured prostate cancer cell line cells, were processed "fresh" via Epic CTC Platform or from "frozen" PBMC pellets. Samples were analysed for CTC enumeration and biomarker characterization via immunofluorescent (IF) biomarkers, fluorescence in-situ hybridization (FISH) and CTC morphology. In the frozen patient PMBC samples, the median CTC recovery was 18%, compared to the freshly processed blood. However, abundance and localization of cytokeratin (CK) and androgen receptor (AR) protein, as measured by IF, were largely concordant between the fresh and frozen CTCs. Furthermore, a FISH analysis of PTEN loss showed high concordance in fresh vs. frozen. The observed data indicate that CTC biomarker characterization from frozen archival samples is feasible and representative of prospectively collected samples.

18.
Front Oncol ; 2: 96, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22934287

RESUMEN

Cancer metastasis, the leading cause of cancer-related deaths, is facilitated in part by the hematogenous transport of circulating tumor cells (CTCs) through the vasculature. Clinical studies have demonstrated that CTCs circulate in the blood of patients with metastatic disease across the major types of carcinomas, and that the number of CTCs in peripheral blood is correlated with overall survival in metastatic breast, colorectal, and prostate cancer. While the potential to monitor metastasis through CTC enumeration exists, the basic physical features of CTCs remain ill defined and moreover, the corresponding clinical utility of these physical parameters is unknown. To elucidate the basic physical features of CTCs we present a label-free imaging technique utilizing differential interference contrast (DIC) microscopy to measure cell volume and to quantify sub-cellular mass-density variations as well as the size of subcellular constituents from mass-density spatial correlations. DIC measurements were carried out on CTCs identified in a breast cancer patient using the high-definition (HD) CTC detection assay. We compared the biophysical features of HD-CTC to normal blood cell subpopulations including leukocytes, platelets (PLT), and red blood cells (RBCs). HD-CTCs were found to possess larger volumes, decreased mass-density fluctuations, and shorter-range spatial density correlations in comparison to leukocytes. Our results suggest that HD-CTCs exhibit biophysical signatures that might be used to potentially aid in their detection and to monitor responses to treatment in a label-free fashion. The biophysical parameters reported here can be incorporated into computational models of CTC-vascular interactions and in vitro flow models to better understand metastasis.

19.
J Oncol ; 2010: 861341, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20111743

RESUMEN

Several methodologies exist to enumerate circulating tumor cells (CTCs) from the blood of cancer patients; however, most methodologies lack high-resolution imaging, and thus, little is known about the cytomorphologic features of these cells. In this study of metastatic colorectal cancer patients, we used immunofluorescent staining with fiber-optic array scanning technology to identify CTCs, with subsequent Wright-Giemsa and Papanicolau staining. The CTCs were compared to the corresponding primary and metastatic tumors. The colorectal CTCs showed marked intrapatient pleomorphism. In comparison to the corresponding tissue biopsies, cells from all sites showed similar pleomorphism, demonstrating that colorectal CTCs retain the pleomorphism present in regions of solid growth. They also often retain particular cytomorphologic features present in the patient's primary and/or metastatic tumor tissue. This study provides an initial analysis of the cytomorphologic features of circulating colon cancer cells, providing a foundation for further investigation into the significance and metastatic potential of CTCs.

20.
Arch Pathol Lab Med ; 133(9): 1468-71, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19722757

RESUMEN

The detailed cytomorphologic appearance of circulating tumor cells (CTCs) in cancer patients is not well described, despite publication of multiple methods for enumerating these cells. In this case study, we present the cytomorphology of CTCs obtained from the blood of a woman with stage IIIB well-differentiated lung adenocarcinoma. Four years after she was diagnosed with her disease, 67 CTCs were identified in a blood sample using an immunofluorescent staining protocol and then subsequently stained with Wright-Giemsa. The cytomorphology of the CTCs was compared with the original tissue biopsy from 4 years prior. We found that CTCs and cells from the original biopsy had strikingly similar morphologic features, including large size in comparison to white blood cells and low nuclear to cytoplasmic ratios with voluminous cytoplasm. Careful cytomorphologic evaluation of CTCs will provide insights about the metastatic significance of these cells, which could yield widespread implications for the diagnosis, treatment, and management of cancer.


Asunto(s)
Adenocarcinoma/patología , Neoplasias Pulmonares/patología , Células Neoplásicas Circulantes/patología , Patología Quirúrgica/métodos , Adenocarcinoma/sangre , Adenocarcinoma/terapia , Recuento de Células , Supervivencia Celular , Terapia Combinada , Femenino , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/terapia , Persona de Mediana Edad , Estadificación de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA