Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 177(3): 766-781.e24, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30955882

RESUMEN

During autophagy, vesicle dynamics and cargo recruitment are driven by numerous adaptors and receptors that become tethered to the phagophore through interactions with lipidated ATG8/LC3 decorating the expanding membrane. Most currently described ATG8-binding proteins exploit a well-defined ATG8-interacting motif (AIM, or LC3-interacting region [LIR]) that contacts a hydrophobic patch on ATG8 known as the LIR/AIM docking site (LDS). Here we describe a new class of ATG8 interactors that exploit ubiquitin-interacting motif (UIM)-like sequences for high-affinity binding to an alternative ATG8 interaction site. Assays with candidate UIM-containing proteins together with unbiased screens identified a large collection of UIM-based ATG8 interactors in plants, yeast, and humans. Analysis of a subset also harboring ubiquitin regulatory X (UBX) domains revealed a role for UIM-directed autophagy in clearing non-functional CDC48/p97 complexes, including some impaired in human disease. With this new class of adaptors and receptors, we greatly extend the reach of selective autophagy and identify new factors regulating autophagic vesicle dynamics.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Secuencias de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/química , Sitios de Unión , Humanos , Proteínas Asociadas a Microtúbulos/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
4.
Plant Cell ; 32(12): 3939-3960, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33004618

RESUMEN

Phosphatidylinositol 3-phosphate (PI3P) is an essential membrane signature for both autophagy and endosomal sorting that is synthesized in plants by the class III phosphatidylinositol 3-kinase (PI3K) complex, consisting of the VPS34 kinase, together with ATG6, VPS15, and either VPS38 or ATG14 as the fourth subunit. Although Arabidopsis (Arabidopsis thaliana) plants missing the three core subunits are infertile, vps38 mutants are viable but have aberrant leaf, root, and seed development, Suc sensing, and endosomal trafficking, suggesting that VPS38 and ATG14 are nonredundant. Here, we evaluated the role of ATG14 through a collection of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and T-DNA insertion mutants disrupting the two Arabidopsis paralogs. atg14a atg14b double mutants were relatively normal phenotypically but displayed pronounced autophagy defects, including reduced accumulation of autophagic bodies and cargo delivery during nutrient stress. Unexpectedly, homozygous atg14a atg14b vps38 triple mutants were viable but showed severely compromised rosette development and reduced fecundity, pollen germination, and autophagy, consistent with a need for both ATG14 and VPS38 to fully actuate PI3P biology. However, the triple mutants still accumulated PI3P, but they were hypersensitive to the PI3K inhibitor wortmannin, indicating that the ATG14/VPS38 component is not essential for PI3P synthesis. Collectively, the ATG14/VPS38 mutant collection now permits the study of plants altered in specific aspects of PI3P biology.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas Relacionadas con la Autofagia/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de Proteínas Quinasas/farmacología , Transporte de Proteínas , Proteínas de Transporte Vesicular/genética , Wortmanina/farmacología
5.
Plant Cell ; 32(9): 2699-2724, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32616663

RESUMEN

Autophagic recycling of proteins, lipids, nucleic acids, carbohydrates, and organelles is essential for cellular homeostasis and optimal health, especially under nutrient-limiting conditions. To better understand how this turnover affects plant growth, development, and survival upon nutrient stress, we applied an integrated multiomics approach to study maize (Zea mays) autophagy mutants subjected to fixed-carbon starvation induced by darkness. Broad metabolic alterations were evident in leaves missing the core autophagy component ATG12 under normal growth conditions (e.g., lipids and secondary metabolism), while changes in amino acid-, carbohydrate-, and nucleotide-related metabolites selectively emerged during fixed-carbon starvation. Through combined proteomic and transcriptomic analyses, we identified numerous autophagy-responsive proteins, which revealed processes underpinning the various metabolic changes seen during carbon stress as well as potential autophagic cargo. Strikingly, a strong upregulation of various catabolic processes was observed in the absence of autophagy, including increases in simple carbohydrate levels with a commensurate drop in starch levels, elevated free amino acid levels with a corresponding reduction in intact protein levels, and a strong increase in the abundance of several nitrogen-rich nucleotide catabolites. Altogether, this analysis showed that fixed-carbon starvation in the absence of autophagy adjusts the choice of respiratory substrates, promotes the transition of peroxisomes to glyoxysomes, and enhances the retention of assimilated nitrogen.


Asunto(s)
Aminoácidos/metabolismo , Autofagia/fisiología , Carbono/metabolismo , Zea mays/citología , Zea mays/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Metabolismo de los Hidratos de Carbono/fisiología , Oscuridad , Regulación de la Expresión Génica de las Plantas , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Mutación , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Zea mays/genética
6.
Mol Cell ; 58(6): 1053-66, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26004230

RESUMEN

Autophagic turnover of intracellular constituents is critical for cellular housekeeping, nutrient recycling, and various aspects of growth and development in eukaryotes. Here we show that autophagy impacts the other major degradative route involving the ubiquitin-proteasome system by eliminating 26S proteasomes, a process we termed proteaphagy. Using Arabidopsis proteasomes tagged with GFP, we observed their deposition into vacuoles via a route requiring components of the autophagy machinery. This transport can be initiated separately by nitrogen starvation and chemical or genetic inhibition of the proteasome, implying distinct induction mechanisms. Proteasome inhibition stimulates comprehensive ubiquitylation of the complex, with the ensuing proteaphagy requiring the proteasome subunit RPN10, which can simultaneously bind both ATG8 and ubiquitin. Collectively, we propose that Arabidopsis RPN10 acts as a selective autophagy receptor that targets inactive 26S proteasomes by concurrent interactions with ubiquitylated proteasome subunits/targets and lipidated ATG8 lining the enveloping autophagic membranes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Leupeptinas/farmacología , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica/efectos de los fármacos , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Ubiquitinación/efectos de los fármacos
7.
J Cell Sci ; 133(21)2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33033180

RESUMEN

The core protease (CP) subcomplex of the 26S proteasome houses the proteolytic active sites and assumes a barrel shape comprised of four co-axially stacked heptameric rings formed by structurally related α- and ß-subunits. CP biogenesis typically begins with the assembly of the α-ring, which then provides a template for ß-subunit integration. In eukaryotes, α-ring assembly is partially mediated by two hetero-dimeric chaperones, termed Pba1-Pba2 (Add66) and Pba3-Pba4 (also known as Irc25-Poc4) in yeast. Pba1-Pba2 initially promotes orderly recruitment of the α-subunits through interactions between their C-terminal HbYX or HbF motifs and pockets at the α5-α6 and α6-α7 interfaces. Here, we identified PBAC5 as a fifth α-ring assembly chaperone in Arabidopsis that directly binds the Pba1 homolog PBAC1 to form a trimeric PBAC5-PBAC1-PBAC2 complex. PBAC5 harbors a HbYX motif that docks with a pocket between the α4 and α5 subunits during α-ring construction. Arabidopsis lacking PBAC5, PBAC1 and/or PBAC2 are hypersensitive to proteotoxic, salt and osmotic stresses, and display proteasome assembly defects. Remarkably, whereas PBAC5 is evolutionarily conserved among plants, sequence relatives are also dispersed within other kingdoms, including a scattered array of fungal, metazoan and oomycete species.


Asunto(s)
Proteínas de Arabidopsis/genética , Chaperonas Moleculares , Complejo de la Endopetidasa Proteasomal , Arabidopsis , Citoplasma , Chaperonas Moleculares/genética , Complejo de la Endopetidasa Proteasomal/genética
8.
Plant Cell ; 30(3): 668-685, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29500318

RESUMEN

Autophagy and the ubiquitin-proteasome system (UPS) are two major protein degradation pathways implicated in the response to microbial infections in eukaryotes. In animals, the contribution of autophagy and the UPS to antibacterial immunity is well documented and several bacteria have evolved measures to target and exploit these systems to the benefit of infection. In plants, the UPS has been established as a hub for immune responses and is targeted by bacteria to enhance virulence. However, the role of autophagy during plant-bacterial interactions is less understood. Here, we have identified both pro- and antibacterial functions of autophagy mechanisms upon infection of Arabidopsis thaliana with virulent Pseudomonas syringae pv tomato DC3000 (Pst). We show that Pst activates autophagy in a type III effector (T3E)-dependent manner and stimulates the autophagic removal of proteasomes (proteaphagy) to support bacterial proliferation. We further identify the T3E Hrp outer protein M1 (HopM1) as a principle mediator of autophagy-inducing activities during infection. In contrast to the probacterial effects of Pst-induced proteaphagy, NEIGHBOR OF BRCA1-dependent selective autophagy counteracts disease progression and limits the formation of HopM1-mediated water-soaked lesions. Together, we demonstrate that distinct autophagy pathways contribute to host immunity and bacterial pathogenesis during Pst infection and provide evidence for an intimate crosstalk between proteasome and autophagy in plant-bacterial interactions.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Autofagia/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Pseudomonas syringae/patogenicidad , Virulencia
9.
Plant Cell ; 30(5): 1077-1099, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29588388

RESUMEN

The posttranslational addition of small ubiquitin-like modifier (SUMO) is an essential protein modification in plants that provides protection against numerous environmental challenges. Ligation is accomplished by a small set of SUMO ligases, with the SAP-MIZ domain-containing SIZ1 and METHYL METHANESULFONATE-SENSITIVE21 (MMS21) ligases having critical roles in stress protection and DNA endoreduplication/repair, respectively. To help identify their corresponding targets in Arabidopsis thaliana, we used siz1 and mms21 mutants for proteomic analyses of SUMOylated proteins enriched via an engineered SUMO1 isoform suitable for mass spectrometric studies. Through multiple data sets from seedlings grown at normal temperatures or exposed to heat stress, we identified over 1000 SUMO targets, most of which are nuclear localized. Whereas no targets could be assigned to MMS21, suggesting that it modifies only a few low abundance proteins, numerous targets could be assigned to SIZ1, including major transcription factors, coactivators/repressors, and chromatin modifiers connected to abiotic and biotic stress defense, some of which associate into multisubunit regulatory complexes. SIZ1 itself is also a target, but studies with mutants protected from SUMOylation failed to uncover a regulatory role. The catalog of SIZ1 substrates indicates that SUMOylation by this ligase provides stress protection by modifying a large array of key nuclear regulators.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Proteómica/métodos , Plantones/genética , Plantones/metabolismo , Sumoilación/genética , Sumoilación/fisiología , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
J Biol Chem ; 294(46): 17570-17592, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31562246

RESUMEN

The 26S proteasome is an essential protease that selectively eliminates dysfunctional and short-lived regulatory proteins in eukaryotes. To define the composition of this proteolytic machine in plants, we tagged either the core protease (CP) or the regulatory particle (RP) sub-complexes in Arabidopsis to enable rapid affinity purification followed by mass spectrometric analysis. Studies on proteasomes enriched from whole seedlings, with or without ATP needed to maintain the holo-proteasome complex, identified all known proteasome subunits but failed to detect isoform preferences, suggesting that Arabidopsis does not construct distinct proteasome sub-types. We also detected a suite of proteasome-interacting proteins, including likely orthologs of the yeast and mammalian chaperones Pba1, Pba2, Pba3, and Pba4 that assist in CP assembly; Ump1 that helps connect CP half-barrels; Nas2, Nas6, and Hsm3 that assist in RP assembly; and Ecm29 that promotes CP-RP association. Proteasomes from seedlings exposed to the proteasome inhibitor MG132 accumulated assembly intermediates, reflecting partially built proteasome sub-complexes associated with assembly chaperones, and the CP capped with the PA200/Blm10 regulator. Genetic analyses of Arabidopsis UMP1 revealed that, unlike in yeast, this chaperone is essential, with mutants lacking the major UMP1a and UMP1b isoforms displaying a strong gametophytic defect. Single ump1 mutants were hypersensitive to conditions that induce proteotoxic, salt and osmotic stress, and also accumulated several proteasome assembly intermediates, consistent with its importance for CP construction. Insights into the chaperones reported here should enable study of the assembly events that generate the 26S holo-proteasome in Arabidopsis from the collection of 64 or more subunits.


Asunto(s)
Arabidopsis/genética , Chaperonas Moleculares/genética , Complejo de la Endopetidasa Proteasomal/genética , Proteómica , Proteínas de Arabidopsis/genética , Cisteína Endopeptidasas/genética , Espectrometría de Masas , Isoformas de Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Plant Physiol ; 180(4): 1829-1847, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31113833

RESUMEN

Stressful environments often lead to protein unfolding and the formation of cytotoxic aggregates that can compromise cell survival. The molecular chaperone heat shock protein (HSP) 101 is a protein disaggregase that co-operates with the small HSP (sHSP) and HSP70 chaperones to facilitate removal of such aggregates and is essential for surviving severe heat stress. To better define how HSP101 protects plants, we investigated the localization and targets of this chaperone in Arabidopsis (Arabidopsis thaliana). By following HSP101 tagged with GFP, we discovered that its intracellular distribution is highly dynamic and includes a robust, reversible sequestration into cytoplasmic foci that vary in number and size among cell types and are potentially enriched in aggregated proteins. Affinity isolation of HSP101 recovered multiple proteasome subunits, suggesting a functional interaction. Consistent with this, the GFP-tagged 26S proteasome regulatory particle non-ATPase (RPN) 1a transiently colocalized with HSP101 in cytoplasmic foci during recovery. In addition, analysis of aggregated (insoluble) proteins showed they are extensively ubiquitylated during heat stress, especially in plants deficient in HSP101 or class I sHSPs, implying that protein disaggregation is important for optimal proteasomal degradation. Many potential HSP101 clients, identified by mass spectrometry of insoluble proteins, overlapped with known stress granule constituents and sHSP-interacting proteins, confirming a role for HSP101 in stress granule function. Connections between HSP101, stress granules, proteasomes, and ubiquitylation imply that dynamic coordination between protein disaggregation and proteolysis is required to survive proteotoxic stress caused by protein aggregation at high temperatures.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Calor , Proteínas de Plantas/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética
12.
J Exp Bot ; 71(1): 73-89, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31494674

RESUMEN

Aggrephagy, a type of selective autophagy that sequesters protein aggregates for degradation in the vacuole, is an important protein quality control mechanism, particularly during cell stress. In mammalian cells, aggrephagy and several other forms of selective autophagy are mediated by dedicated cargo receptors such as NEIGHBOR OF BRCA1 (NBR1). Although plant NBR1 homologs have been linked to selective autophagy during biotic stress, it remains unclear how they impact selective autophagy under non-stressed and abiotic stress conditions. Through microscopic and biochemical analysis of nbr1 mutants expressing autophagy markers and an aggregation-prone reporter, we tested the connection between NBR1 and aggrephagy in Arabidopsis. Although NBR1 is not essential for general autophagy, or for the selective clearance of peroxisomes, mitochondria, or the ER, we found that NBR1 is required for the heat-induced formation of autophagic vesicles. Moreover, cytoplasmic puncta containing aggregation-prone proteins, which were rarely observed in wild-type plants, were found to accumulate in nbr1 mutants under both control and heat stress conditions. Given that NBR1 co-localizes with these cytoplasmic puncta, we propose that Arabidopsis NBR1 is a plant aggrephagy receptor essential for maintaining proteostasis under both heat stress and non-stress conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Autofagia/genética , Proteínas Portadoras/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo
15.
Plant Cell ; 28(6): 1279-96, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27194708

RESUMEN

Proteotoxic stress, which is generated by the accumulation of unfolded or aberrant proteins due to environmental or cellular perturbations, can be mitigated by several mechanisms, including activation of the unfolded protein response and coordinated increases in protein chaperones and activities that direct proteolysis, such as the 26S proteasome. Using RNA-seq analyses combined with chemical inhibitors or mutants that induce proteotoxic stress by impairing 26S proteasome capacity, we defined the transcriptional network that responds to this stress in Arabidopsis thaliana This network includes genes encoding core and assembly factors needed to build the complete 26S particle, alternative proteasome capping factors, enzymes involved in protein ubiquitylation/deubiquitylation and cellular detoxification, protein chaperones, autophagy components, and various transcriptional regulators. Many loci in this proteasome-stress regulon contain a consensus cis-element upstream of the transcription start site, which was previously identified as a binding site for the NAM/ATAF1/CUC2 78 (NAC78) transcription factor. Double mutants disrupting NAC78 and its closest relative NAC53 are compromised in the activation of this regulon and notably are strongly hypersensitive to the proteasome inhibitors MG132 and bortezomib. Given that NAC53 and NAC78 homo- and heterodimerize, we propose that they work as a pair in activating the expression of numerous factors that help plants survive proteotoxic stress and thus play a central regulatory role in maintaining protein homeostasis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulón/genética , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Bortezomib/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Leupeptinas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Regulón/efectos de los fármacos , Factores de Transcripción/genética
16.
Plant Cell ; 23(12): 4298-317, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22158466

RESUMEN

The regulatory particle (RP) of the 26S proteasome contains a heterohexameric ring of AAA-ATPases (RPT1-6) that unfolds and inserts substrates into the core protease (CP) for degradation. Through genetic analysis of the Arabidopsis thaliana gene pair encoding RPT2, we show that this subunit plays a critical role in 26S proteasome assembly, histone dynamics, and plant development. rpt2a rpt2b double null mutants are blocked in both male and female gamete transmission, demonstrating that the subunit is essential. Whereas rpt2b mutants are phenotypically normal, rpt2a mutants display a range of defects, including impaired leaf, root, trichome, and pollen development, delayed flowering, stem fasciation, hypersensitivity to mitomycin C and amino acid analogs, hyposensitivity to the proteasome inhibitor MG132, and decreased 26S complex stability. The rpt2a phenotype can be rescued by both RPT2a and RPT2b, indicative of functional redundancy, but not by RPT2a mutants altered in ATP binding/hydrolysis or missing the C-terminal hydrophobic sequence that docks the RPT ring onto the CP. Many rpt2a phenotypes are shared with mutants lacking the chromatin assembly factor complex CAF1. Like caf1 mutants, plants missing RPT2a or reduced in other RP subunits contain less histones, thus implicating RPT2 specifically, and the 26S proteasome generally, in plant nucleosome assembly.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Células Germinativas de las Plantas/crecimiento & desarrollo , Complejo de la Endopetidasa Proteasomal/metabolismo , Adenosina Trifosfato/metabolismo , Alelos , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fraccionamiento Celular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Prueba de Complementación Genética , Sitios Genéticos , Células Germinativas de las Plantas/citología , Células Germinativas de las Plantas/metabolismo , Histonas/genética , Histonas/metabolismo , Immunoblotting , Mitomicina/farmacología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Polen/genética , Polen/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Eliminación de Secuencia , Transducción de Señal , Transgenes
17.
Plant J ; 72(6): 1015-26, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22966775

RESUMEN

The glutenin fraction of wheat storage proteins consists of large polymers in which high- and low-molecular-weight subunits are connected by inter-chain disulfide bonds. We found that assembly of a low-molecular-weight glutenin subunit in the endoplasmic reticulum is a rapid process that leads to accumulation of various oligomeric forms, and that this assembly is sensitive to perturbation of the cellular redox environment. In endoplasmic reticulum-derived microsomes, low-molecular-weight glutenin subunits are subjected to hyper-polymerization, indicating that cytosolic factors play an important role in limiting polymer size. Addition of physiological concentrations of reduced glutathione is sufficient to maintain the original polymerization pattern of the glutenin subunits upon cytosol dilution. Furthermore, we show that a low-molecular-weight glutenin subunit can be glutathionylated in endoplasmic reticulum-derived microsomes, and that it can be directly reduced by glutathione in vitro. These results indicate that glutenin polymerization is sensitive to changes in the redox state of the cell, and suggest that the presence of a reducing cytosolic environment plays an important role in regulating disulfide bond formation in the endoplasmic reticulum of plant cells.


Asunto(s)
Glútenes/metabolismo , Triticum/metabolismo , Retículo Endoplásmico/metabolismo , Expresión Génica , Glutatión/metabolismo , Peso Molecular , Oxidación-Reducción , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polimerizacion , Pliegue de Proteína , Protoplastos , Nicotiana/genética , Nicotiana/metabolismo , Transgenes , Triticum/genética
18.
Plant J ; 65(2): 218-29, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21223387

RESUMEN

The fate of the type I ribosome-inactivating protein (RIP) saporin when initially targeted to the endoplasmic reticulum (ER) in tobacco protoplasts has been examined. We find that saporin expression causes a marked decrease in protein synthesis, indicating that a fraction of the toxin reaches the cytosol and inactivates tobacco ribosomes. We determined that saporin is largely secreted but some is retained intracellularly, most likely in a vacuolar compartment, thus behaving very differently from the prototype RIP ricin A chain. We also find that the signal peptide can interfere with the catalytic activity of saporin when the protein fails to be targeted to the ER membrane, and that saporin toxicity undergoes signal sequence-specific regulation when the host cell is subjected to ER stress. Replacement of the saporin signal peptide with that of the ER chaperone BiP reduces saporin toxicity and makes it independent of cell stress. We propose that this stress-induced toxicity may have a role in pathogen defence.


Asunto(s)
Señales de Clasificación de Proteína/fisiología , Proteínas Inactivadoras de Ribosomas Tipo 1/metabolismo , Proteínas Inactivadoras de Ribosomas Tipo 1/toxicidad , Ribosomas/metabolismo , Saponaria/metabolismo , Secuencia de Aminoácidos , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Glicosilación , Espacio Intracelular/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas , Señales de Clasificación de Proteína/genética , Inhibidores de la Síntesis de la Proteína/metabolismo , Inhibidores de la Síntesis de la Proteína/toxicidad , Transporte de Proteínas , Protoplastos/efectos de los fármacos , Protoplastos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Inactivadoras de Ribosomas Tipo 1/genética , Ribosomas/efectos de los fármacos , Saponaria/genética , Saponaria/toxicidad , Saporinas , Estrés Fisiológico , Nicotiana/genética , Nicotiana/metabolismo
19.
Cell Rep ; 38(11): 110535, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35294869

RESUMEN

As central effectors of ubiquitin (Ub)-mediated proteolysis, proteasomes are regulated at multiple levels, including degradation of unwanted or dysfunctional particles via autophagy (termed proteaphagy). In yeast, inactive proteasomes are exported from the nucleus, sequestered into cytoplasmic aggresomes via the Hsp42 chaperone, extensively ubiquitylated, and then tethered to the expanding phagophore by the autophagy receptor Cue5. Here, we demonstrate the need for ubiquitylation driven by the trio of Ub ligases (E3s), San1, Rsp5, and Hul5, which together with their corresponding E2s work sequentially to promote nuclear export and Cue5 recognition. Whereas San1 functions prior to nuclear export, Rsp5 and Hul5 likely decorate aggresome-localized proteasomes in concert. Ultimately, topologically complex Ub chain(s) containing both K48 and K63 Ub-Ub linkages are assembled, mainly on the regulatory particle, to generate autophagy-competent substrates. Because San1, Rsp5, Hul5, Hsp42, and Cue5 also participate in general proteostasis, proteaphagy likely engages a fundamental mechanism for eliminating inactive/misfolded proteins.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Autofagia/fisiología , Proteínas de Choque Térmico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
20.
Biochem J ; 427(3): 513-21, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20180780

RESUMEN

The ER (endoplasmic reticulum) has long been considered the plant cell compartment within which protein disulfide bond formation occurs. Members of the ER-located PDI (protein disulfide isomerase) family are responsible for oxidizing, reducing and isomerizing disulfide bonds, as well as functioning as chaperones to newly synthesized proteins. In the present study we demonstrate that an abundant 7S lectin of the castor oil seed protein storage vacuole, RCA (Ricinus communis agglutinin 1), is folded in the ER as disulfide bonded A-B dimers in both vegetative cells of tobacco leaf and in castor oil seed endosperm, but that these assemble into (A-B)2 disulfide-bonded tetramers only after Golgi-mediated delivery to the storage vacuoles in the producing endosperm tissue. These observations reveal an alternative and novel site conducive for disulfide bond formation in plant cells.


Asunto(s)
Disulfuros/metabolismo , Lectinas de Plantas/metabolismo , Plantas/metabolismo , Vacuolas/metabolismo , Arabidopsis/metabolismo , Aceite de Ricino/metabolismo , Disulfuros/química , Retículo Endoplásmico/metabolismo , Inmunoprecipitación , Hojas de la Planta/metabolismo , Lectinas de Plantas/química , Pliegue de Proteína , Multimerización de Proteína , Ricina/metabolismo , Semillas/metabolismo , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA