Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Muscle Res Cell Motil ; 44(3): 201-208, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36131171

RESUMEN

Ca2+ acts on troponin and tropomyosin to switch the thin filament on and off, however in cardiac muscle a more graded form of regulation is essential to tailor cardiac output to the body's needs. This is achieved by the action of adrenaline on ß1 receptors of heart muscle cells leading to enhanced contractility, faster heart rate and faster relaxation (lusitropy) via activation of the cyclic AMP-dependent protein kinase, PKA. PKA phosphorylates serines 22 and 23 in the N-terminal peptide of cardiac troponin I. As a consequence the rate of Ca2+release from troponin is increased. This is the key determinant of lusitropy. The molecular mechanism of this process has remained unknown long after the mechanism of the troponin Ca2+ switch itself was defined. Investigation of this subtle process at the atomic level poses a challenge, since the change in Ca2+-sensitivity is only about twofold and key parts of the troponin modulation and regulation system are disordered and cannot be fully resolved by conventional structural approaches. We will review recent studies using molecular dynamics simulations together with functional, cryo-em and NMR techniques that have started to give us a precise picture of how phosphorylation of troponin I modulates the dynamics of troponin to produce the lusitropic effect.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Troponina I , Fosforilación , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Miocardio/metabolismo , Sarcómeros/metabolismo , Calcio/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(40): 24691-24700, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32968017

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most common heritable heart disease. Although the genetic cause of HCM has been linked to mutations in genes encoding sarcomeric proteins, the ability to predict clinical outcomes based on specific mutations in HCM patients is limited. Moreover, how mutations in different sarcomeric proteins can result in highly similar clinical phenotypes remains unknown. Posttranslational modifications (PTMs) and alternative splicing regulate the function of sarcomeric proteins; hence, it is critical to study HCM at the level of proteoforms to gain insights into the mechanisms underlying HCM. Herein, we employed high-resolution mass spectrometry-based top-down proteomics to comprehensively characterize sarcomeric proteoforms in septal myectomy tissues from HCM patients exhibiting severe outflow track obstruction (n = 16) compared to nonfailing donor hearts (n = 16). We observed a complex landscape of sarcomeric proteoforms arising from combinatorial PTMs, alternative splicing, and genetic variation in HCM. A coordinated decrease of phosphorylation in important myofilament and Z-disk proteins with a linear correlation suggests PTM cross-talk in the sarcomere and dysregulation of protein kinase A pathways in HCM. Strikingly, we discovered that the sarcomeric proteoform alterations in the myocardium of HCM patients undergoing septal myectomy were remarkably consistent, regardless of the underlying HCM-causing mutations. This study suggests that the manifestation of severe HCM coalesces at the proteoform level despite distinct genotype, which underscores the importance of molecular characterization of HCM phenotype and presents an opportunity to identify broad-spectrum treatments to mitigate the most severe manifestations of this genetically heterogenous disease.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas/genética , Sarcómeros/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Genotipo , Humanos , Espectrometría de Masas , Miocardio/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteómica , Sarcómeros/genética , Transducción de Señal
3.
Arch Biochem Biophys ; 725: 109282, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35577070

RESUMEN

Tropomyosin, controlled by troponin-linked Ca2+-binding, regulates muscle contraction by a macromolecular scale steric-mechanism that governs myosin-crossbridge-actin interactions. At low-Ca2+, C-terminal domains of troponin-I (TnI) trap tropomyosin in a position on thin filaments that interferes with myosin-binding, thus causing muscle relaxation. Steric inhibition is reversed at high-Ca2+ when TnI releases from F-actin-tropomyosin as Ca2+ and the TnI switch-peptide bind to the N-lobe of troponin-C (TnC). The opposite end of cardiac TnI contains a phosphorylation-sensitive ∼30 residue-long N-terminal peptide that is absent in skeletal muscle, and likely modifies these interactions in hearts. Here, PKA-dependent phosphorylation of serine 23 and 24 modulates Ca2+ and possibly switch-peptide binding to TnC, causing faster relaxation during the cardiac-cycle (lusitropy). The cardiac-specific N-terminal TnI domain is not captured in crystal structures of troponin or in cryo-EM reconstructions of thin filaments; thus, its global impact on thin filament structure and function is uncertain. Here, we used protein-protein docking and molecular dynamics simulation-based protocols to build a troponin model that was guided by and hence consistent with the recent seminal Yamada structure of Ca2+-activated thin filaments. We find that when present on thin filaments, phosphorylated Ser23/24 along with adjacent polar TnI residues interact closely with both tropomyosin and the N-lobe of TnC during our simulations. These interactions would likely bias tropomyosin to an off-state positioning on actin. In situ, such enhanced relaxation kinetics would promote cardiac lusitropy.


Asunto(s)
Tropomiosina , Troponina I , Actinas/metabolismo , Calcio/metabolismo , Simulación de Dinámica Molecular , Péptidos/metabolismo , Tropomiosina/química , Troponina C/metabolismo , Troponina I/química
4.
J Muscle Res Cell Motil ; 41(1): 71-89, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31030382

RESUMEN

The molecular mechanism by which Ca2+ binding and phosphorylation regulate muscle contraction through Troponin is not yet fully understood. Revealing the differences between the relaxed and active structure of cTn, as well as the conformational changes that follow phosphorylation has remained a challenge for structural biologists over the years. Here we review the current understanding of how Ca2+, phosphorylation and disease-causing mutations affect the structure and dynamics of troponin to regulate the thin filament based on electron microscopy, X-ray diffraction, NMR and molecular dynamics methodologies.


Asunto(s)
Calcio/metabolismo , Contracción Muscular/fisiología , Troponina I/fisiología , Humanos
5.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339418

RESUMEN

Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the most prevalent forms of the chronic and progressive pathological condition known as cardiomyopathy. These diseases have different aetiologies; however, they share the feature of haemodynamic abnormalities, which is mainly due to dysfunction in the contractile proteins that make up the contractile unit known as the sarcomere. To date, pharmacological treatment options are not disease-specific and rather focus on managing the symptoms, without addressing the disease mechanism. Earliest attempts at improving cardiac contractility by modulating the sarcomere indirectly (inotropes) resulted in unwanted effects. In contrast, targeting the sarcomere directly, aided by high-throughput screening systems, could identify small molecules with a superior therapeutic value in cardiac muscle disorders. Herein, an extensive literature review of 21 small molecules directed to five different targets was conducted. A simple scoring system was created to assess the suitability of small molecules for therapy by evaluating them in eight different criteria. Most of the compounds failed due to lack of target specificity or poor physicochemical properties. Six compounds stood out, showing a potential therapeutic value in HCM, DCM or heart failure (HF). Omecamtiv Mecarbil and Danicamtiv (myosin activators), Mavacamten, CK-274 and MYK-581 (myosin inhibitors) and AMG 594 (Ca2+-sensitiser) are all small molecules that allosterically modulate troponin or myosin. Omecamtiv Mecarbil showed limited efficacy in phase III GALACTIC-HF trial, while, results from phase III EXPLORER-HCM trial were recently published, indicating that Mavacamten reduced left ventricular outflow tract (LVOT) obstruction and diastolic dysfunction and improved the health status of patients with HCM. A novel category of small molecules known as "recouplers" was reported to target a phenomenon termed uncoupling commonly found in familial cardiomyopathies but has not progressed beyond preclinical work. In conclusion, the contractile apparatus is a promising target for new drug development.


Asunto(s)
Cardiomiopatía Hipertrófica/tratamiento farmacológico , Enfermedades Musculares/tratamiento farmacológico , Miofibrillas/efectos de los fármacos , Animales , Cardiomiopatía Hipertrófica/metabolismo , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Ensayos Clínicos como Asunto , Humanos , Contracción Muscular/efectos de los fármacos , Enfermedades Musculares/metabolismo , Miofibrillas/metabolismo
6.
J Muscle Res Cell Motil ; 40(2): 69-76, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31228047

RESUMEN

The study of muscle and contractility is an unusual scientific endeavour since it has from the start been focussed on one problem-What makes muscle work?-and yet has needed a vast range of different approaches and techniques to study it. Its uniqueness lies in the fundamental fascination of a large scale molecular machine that converts chemical energy into mechanical energy at ambient temperature and with high efficiency that is also controlled by an exquisitely intricate yet utterly reliable regulatory system and is an essential component of animal life. The investigation of muscle is as innovative as any other field of research. As soon as one approach appears to be played out another comes along. It is instructive to consider this as a series of waves of novel and heightened activity starting in the 1950s. The thesis of this article is that we are approaching the fourth wave with the recent rise of interest in small molecules as research tools and possible therapies for muscle diseases.


Asunto(s)
Investigación Biomédica , Modelos Biológicos , Contracción Muscular , Músculos , Animales , Humanos
7.
Int J Mol Sci ; 19(7)2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29997361

RESUMEN

The discovery that mutations in myosin and actin genes, together with mutations in the other components of the muscle sarcomere, are responsible for a range of inherited muscle diseases (myopathies) has revolutionized the study of muscle, converting it from a subject of basic science to a relevant subject for clinical study and has been responsible for a great increase of interest in muscle studies. Myopathies are linked to mutations in five of the myosin heavy chain genes, three of the myosin light chain genes, and three of the actin genes. This review aims to determine to what extent we can explain disease phenotype from the mutant genotype. To optimise our chances of finding the right mechanism we must study a myopathy where there are a large number of different mutations that cause a common phenotype and so are likely to have a common mechanism: a corollary to this criterion is that if any mutation causes the disease phenotype but does not correspond to the proposed mechanism, then the whole mechanism is suspect. Using these criteria, we consider two cases where plausible genotype-phenotype mechanisms have been proposed: the actin "A-triad" and the myosin "mesa/IHD" models.


Asunto(s)
Actinas/genética , Enfermedades Musculares/genética , Mutación , Miosinas/genética , Edad de Inicio , Regulación de la Expresión Génica , Humanos , Músculo Esquelético/fisiopatología , Enfermedades Musculares/fisiopatología , Fenotipo
8.
Biophys J ; 113(11): 2444-2451, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29211998

RESUMEN

Elongated tropomyosin, associated with actin-subunits along the surface of thin filaments, makes electrostatic interactions with clusters of conserved residues, K326, K328, and R147, on actin. The association is weak, permitting low-energy cost regulatory movement of tropomyosin across the filament during muscle activation. Interestingly, acidic D292 on actin, also evolutionarily conserved, lies adjacent to the three-residue cluster of basic amino acids and thus may moderate the combined local positive charge, diminishing tropomyosin-actin interaction and facilitating regulatory-switching. Indeed, charge neutralization of D292 is connected to muscle hypotonia in individuals with D292V actin mutations and linked to congenital fiber-type disproportion. Here, the D292V mutation may predispose tropomyosin-actin positioning to a myosin-blocking state, aberrantly favoring muscle relaxation, thus mimicking the low-Ca2+ effect of troponin even in activated muscles. To test this hypothesis, interaction energetics and in vitro function of wild-type and D292V filaments were measured. Energy landscapes based on F-actin-tropomyosin models show the mutation localizes tropomyosin in a blocked-state position on actin defined by a deeper energy minimum, consistent with augmented steric-interference of actin-myosin binding. In addition, whereas myosin-dependent motility of troponin/tropomyosin-free D292V F-actin is normal, motility is dramatically inhibited after addition of tropomyosin to the mutant actin. Thus, D292V-induced blocked-state stabilization appears to disrupt the delicately poised energy balance governing thin filament regulation. Our results validate the premise that stereospecific but necessarily weak binding of tropomyosin to F-actin is required for effective thin filament function.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Tropomiosina/metabolismo , Actinas/química , Actinas/genética , Calcio/metabolismo , Humanos , Modelos Moleculares , Mutación , Miosinas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Electricidad Estática , Termodinámica
9.
Am J Physiol Heart Circ Physiol ; 313(6): H1213-H1226, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28887330

RESUMEN

Patients with hypertrophic cardiomyopathy, particularly young adults, can die from arrhythmia, but the mechanism underlying abnormal rhythm formation remains unknown. C57Bl6 × CBA/Ca mice carrying a cardiac actin ( ACTC) E99K (Glu99Lys) mutation reproduce many aspects of human hypertrophic cardiomyopathy, including increased myofilament Ca2+ sensitivity and sudden death in a proportion (up to 40%) of young (28-40 day old) animals. We studied the hearts of transgenic (TG; ACTC E99K) mice and their non-TG (NTG) littermates when they were in their vulnerable period (28-40 days old) and when they were adult (8-12 wk old). Ventricular myocytes were isolated from the hearts of TG and NTG mice at these two time points. We also examined the hearts of mice that died suddenly (SCD). SCD animals had approximately four times more collagen compared with age-matched NTG mice, yet myocyte cell size was normal. Young TG mice had double the collagen content of NTG mice. Contraction and Ca2+ transients were greater in cells from young TG mice compared with their NTG littermates but not in cells from adult mice (TG or NTG). Cells from young TG mice had a greater propensity for Ca2+ waves than NTG littermates, and, despite similar sarcoplasmic reticulum Ca2+ content, a proportion of these cells had larger Ca2+ spark mass. We found that the probability of SCD in young TG mice was increased when the mutation was expressed in animals with a CBA/Ca2+ background and almost eliminated in mice bred on a C57Bl6 background. The latter TG mice had normal cellular Ca2+ homeostasis. NEW & NOTEWORTHY Mice with the actin Glu99Lys hypertrophic cardiomyopathy mutation ( ACTC E99K) are prone to sudden cardiac death around 40 days, associated with increased Ca2+ transients, spark mass, and fibrosis. However, adult survivors have normal Ca2+ transients and spark density accompanied by hypertrophy. Penetrance of the sudden cardiac death phenotype depends on the genetic background of the mouse. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/calcium-regulation-in-e99k-mouse-heart/ .


Asunto(s)
Señalización del Calcio , Cardiomiopatía Hipertrófica/metabolismo , Muerte Súbita Cardíaca , Antecedentes Genéticos , Actinas/genética , Factores de Edad , Animales , Cardiomiopatía Hipertrófica/genética , Células Cultivadas , Colágeno/metabolismo , Corazón/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Mutación Missense , Contracción Miocárdica , Miocitos Cardíacos/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 311(2): H465-75, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27233767

RESUMEN

Myocardial remodeling in response to chronic myocardial infarction (CMI) progresses through two phases, hypertrophic "compensation" and congestive "decompensation." Nothing is known about the ability of uninfarcted myocardium to produce force, velocity, and power during these clinical phases, even though adaptation in these regions likely drives progression of compensation. We hypothesized that enhanced cross-bridge-level contractility underlies mechanical compensation and is controlled in part by changes in the phosphorylation states of myosin regulatory proteins. We induced CMI in rats by left anterior descending coronary artery ligation. We then measured mechanical performance in permeabilized ventricular trabecula taken distant from the infarct zone and assayed myosin regulatory protein phosphorylation in each individual trabecula. During full activation, the compensated myocardium produced twice as much power and 31% greater isometric force compared with noninfarcted controls. Isometric force during submaximal activations was raised >2.4-fold, while power was 2-fold greater. Electron and confocal microscopy demonstrated that these mechanical changes were not a result of increased density of contractile protein and therefore not an effect of tissue hypertrophy. Hence, sarcomere-level contractile adaptations are key determinants of enhanced trabecular mechanics and of the overall cardiac compensatory response. Phosphorylation of myosin regulatory light chain (RLC) increased and remained elevated post-MI, while phosphorylation of myosin binding protein-C (MyBP-C) was initially depressed but then increased as the hearts became decompensated. These sensitivities to CMI are in accordance with phosphorylation-dependent regulatory roles for RLC and MyBP-C in crossbridge function and with compensatory adaptation in force and power that we observed in post-CMI trabeculae.


Asunto(s)
Proteínas Portadoras/metabolismo , Contracción Miocárdica/fisiología , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Sarcómeros/metabolismo , Adaptación Fisiológica , Animales , Vasos Coronarios/cirugía , Ligadura , Masculino , Microscopía Confocal , Microscopía Electrónica , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/ultraestructura , Fosforilación , Ratas , Ratas Sprague-Dawley , Sarcómeros/fisiología , Sarcómeros/ultraestructura
11.
Arch Biochem Biophys ; 601: 113-20, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27036851

RESUMEN

We investigated the effect of 7 Hypertrophic Cardiomyopathy (HCM)-causing mutations in troponin T (TnT) on troponin function in thin filaments reconstituted with actin and human cardiac tropomyosin. We used the quantitative in vitro motility assay to study Ca(2+)-regulation of unloaded movement and its modulation by troponin I phosphorylation. Troponin from a patient with the K280N TnT mutation showed no difference in Ca(2+)-sensitivity when compared with donor heart troponin and the Ca(2+)-sensitivity was also independent of the troponin I phosphorylation level (uncoupled). The recombinant K280N TnT mutation increased Ca(2+)-sensitivity 1.7-fold and was also uncoupled. The R92Q TnT mutation in troponin from transgenic mouse increased Ca(2+)-sensitivity and was also completely uncoupled. Five TnT mutations (Δ14, Δ28 + 7, ΔE160, S179F and K273E) studied in recombinant troponin increased Ca(2+)-sensitivity and were all fully uncoupled. Thus, for HCM-causing mutations in TnT, Ca(2+)-sensitisation together with uncoupling in vitro is the usual response and both factors may contribute to the HCM phenotype. We also found that Epigallocatechin-3-gallate (EGCG) can restore coupling to all uncoupled HCM-causing TnT mutations. In fact the combination of Ca(2+)-desensitisation and re-coupling due to EGCG completely reverses both the abnormalities found in troponin with a TnT HCM mutation suggesting it may have therapeutic potential.


Asunto(s)
Calcio/química , Cardiomiopatía Hipertrófica/genética , Mutación , Troponina I/química , Troponina T/genética , Citoesqueleto de Actina/metabolismo , Animales , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Catequina/análogos & derivados , Catequina/química , Relación Dosis-Respuesta a Droga , Corazón/fisiología , Humanos , Ratones , Ratones Transgénicos , Contracción Miocárdica , Fosforilación , Proteínas Recombinantes/química
12.
Phys Chem Chem Phys ; 18(30): 20691-707, 2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27412261

RESUMEN

The only available crystal structure of the human cardiac troponin molecule (cTn) in the Ca(2+) activated state does not include crucial segments, including the N-terminus of the cTn inhibitory subunit (cTnI). We have applied all-atom molecular dynamics (MD) simulations to study the structure and dynamics of cTn, both in the unphosphorylated and bis-phosphorylated states at Ser23/Ser24 of cTnI. We performed multiple microsecond MD simulations of wild type (WT) cTn (6, 5 µs) and bisphosphorylated (SP23/SP24) cTn (9 µs) on a 419 amino acid cTn model containing human sequence cTnC (1-161), cTnI (1-171) and cTnT (212-298), including residues not present in the crystal structure. We have compared our results to previous computational studies, and proven that longer simulations and a water box of at least 25 Å are needed to sample the interesting conformational shifts both in the native and bis-phosphorylated states. As a consequence of the introduction into the model of the C-terminus of cTnT that was missing in previous studies, cTnC-cTnI interactions that are responsible for the cTn dynamics are altered. We have also shown that phosphorylation does not increase cTn fluctuations, and its effects on the protein-protein interaction profiles cannot be assessed in a significant way. Finally, we propose that phosphorylation could provoke a loss of Ca(2+) by stabilizing out-of-coordination distances of the cTnC's EF hand II residues, and in particular Ser 69.


Asunto(s)
Calcio , Troponina I/química , Humanos , Simulación de Dinámica Molecular , Fosforilación
13.
Proc Natl Acad Sci U S A ; 110(1): 318-23, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23251030

RESUMEN

Of all the myosin filaments in muscle, the most important in terms of human health, and so far the least studied, are those in the human heart. Here we report a 3D single-particle analysis of electron micrograph images of negatively stained myosin filaments isolated from human cardiac muscle in the normal (undiseased) relaxed state. The resulting 28-Å resolution 3D reconstruction shows axial and azimuthal (no radial) myosin head perturbations within the 429-Å axial repeat, with rotations between successive 132 Å-, 148 Å-, and 149 Å-spaced crowns of heads close to 60°, 35°, and 25° (all would be 40° in an unperturbed three-stranded helix). We have defined the myosin head atomic arrangements within the three crown levels and have modeled the organization of myosin subfragment 2 and the possible locations of the 39 Å-spaced domains of titin and the cardiac isoform of myosin-binding protein-C on the surface of the myosin filament backbone. Best fits were obtained with head conformations on all crowns close to the structure of the two-headed myosin molecule of vertebrate chicken smooth muscle in the dephosphorylated relaxed state. Individual crowns show differences in head-pair tilts and subfragment 2 orientations, which, together with the observed perturbations, result in different intercrown head interactions, including one not reported before. Analysis of the interactions between the myosin heads, the cardiac isoform of myosin-binding protein-C, and titin will aid in understanding of the structural effects of mutations in these proteins known to be associated with human cardiomyopathies.


Asunto(s)
Modelos Moleculares , Miocardio/química , Miofibrillas/química , Miosinas/química , Miosinas/ultraestructura , Proteínas Portadoras/metabolismo , Conectina , Cristalografía por Rayos X , Humanos , Imagenología Tridimensional , Microscopía Electrónica , Proteínas Musculares/metabolismo , Miocardio/ultraestructura , Miofibrillas/ultraestructura , Proteínas Quinasas/metabolismo
14.
Hum Mol Genet ; 22(24): 4978-87, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23886664

RESUMEN

The congenital myopathies include a wide spectrum of clinically, histologically and genetically variable neuromuscular disorders many of which are caused by mutations in genes for sarcomeric proteins. Some congenital myopathy patients have a hypercontractile phenotype. Recent functional studies demonstrated that ACTA1 K326N and TPM2 ΔK7 mutations were associated with hypercontractility that could be explained by increased myofibrillar Ca(2+) sensitivity. A recent structure of the complex of actin and tropomyosin in the relaxed state showed that both these mutations are located in the actin-tropomyosin interface. Tropomyosin is an elongated molecule with a 7-fold repeated motif of around 40 amino acids corresponding to the 7 actin monomers it interacts with. Actin binds to tropomyosin electrostatically at two points, through Asp25 and through a cluster of amino acids that includes Lys326, mutated in the gain-of-function mutation. Asp25 interacts with tropomyosin K6, next to K7 that was mutated in the other gain-of-function mutation. We identified four tropomyosin motifs interacting with Asp25 (K6-K7, K48-K49, R90-R91 and R167-K168) and three E-E/D-K/R motifs interacting with Lys326 (E139, E181 and E218), and we predicted that the known skeletal myopathy mutations ΔK7, ΔK49, R91G, ΔE139, K168E and E181K would cause a gain of function. Tests by an in vitro motility assay confirmed that these mutations increased Ca(2+) sensitivity, while mutations not in these motifs (R167H, R244G) decreased Ca(2+) sensitivity. The work reported here explains the molecular mechanism for 6 out of 49 known disease-causing mutations in the TPM2 and TPM3 genes, derived from structural data of the actin-tropomyosin interface.


Asunto(s)
Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Mutación , Dominios y Motivos de Interacción de Proteínas/genética , Tropomiosina/genética , Tropomiosina/metabolismo , Actinas/química , Actinas/genética , Actinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Contracción Muscular/genética , Músculo Esquelético/patología , Enfermedades Musculares/congénito , Unión Proteica , Conformación Proteica , Tropomiosina/química
15.
Am J Physiol Heart Circ Physiol ; 309(11): H1936-46, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26432839

RESUMEN

We investigated cardiac contractility in the ACTC E361G transgenic mouse model of dilated cardiomyopathy (DCM). No differences in cardiac dimensions or systolic function were observed in young mice, whereas young adult mice exhibited only mild diastolic abnormalities. Dobutamine had an inotropic and lusitropic effect on the mouse heart. In papillary muscle at 37°C, dobutamine increased relaxation rates [∼50% increase of peak rate of force decline normalized to force (dF/dtmin/F), 25% reduction of time to 90% relaxation (t90) in nontransgenic (NTG) mice], but in the ACTC E361G mouse, dF/dtmin/F was increased 20-30%, and t90 was only reduced 10% at 10 Hz. Pressure-volume measurements showed increases in maximum rate of pressure decline and decreases in time constant of left ventricular pressure decay in the ACTC E361G mouse that were 25-30% of the changes in the NTG mouse, consistent with blunting of the lusitropic response. The inotropic effect of dobutamine was also blunted in ACTC E361G mice, and the dobutamine-stimulated increase in cardiac output (CO) was reduced from 2,100 to 900 µl/min. Mice were treated with high doses of ANG II for 4 wk. The chronic stress treatment evoked systolic dysfunction in ACTC E361G mice but not in NTG. There was a significant reduction in rates of pressure increase and decrease, as well as reduced end-systolic pressure and increased volume. Ejection fraction and CO were reduced in the ACTC E361G mouse, indicating DCM. In vitro DCM-causing mutations uncouple the relationship between Ca(2+) sensitivity and troponin I phosphorylation. We conclude that this leads to the observed, reduced response to ß1 agonists and reduced cardiac reserve that predisposes the heart to DCM under conditions of chronic stress.


Asunto(s)
Actinas/genética , Agonistas de Receptores Adrenérgicos beta 1/farmacología , Angiotensina II , Cardiomiopatía Dilatada/fisiopatología , Cardiotónicos/farmacología , Dobutamina/farmacología , Mutación , Contracción Miocárdica/efectos de los fármacos , Disfunción Ventricular Izquierda/fisiopatología , Función Ventricular Izquierda/efectos de los fármacos , Factores de Edad , Animales , Calcio/metabolismo , Cardiomiopatía Dilatada/inducido químicamente , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Modelos Animales de Enfermedad , Acoplamiento Excitación-Contracción/efectos de los fármacos , Predisposición Genética a la Enfermedad , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Músculos Papilares/efectos de los fármacos , Músculos Papilares/metabolismo , Músculos Papilares/fisiopatología , Fenotipo , Fosforilación , Troponina I/metabolismo , Disfunción Ventricular Izquierda/inducido químicamente , Disfunción Ventricular Izquierda/metabolismo , Presión Ventricular/efectos de los fármacos
16.
J Muscle Res Cell Motil ; 36(2): 145, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25361644

RESUMEN

In an article in this edition of the Journal of Muscle Research and Cell Motility, Geeves, Hitchcock-DiGregori and Gunning present a nomenclature founded on the gene and exon structure of tropomyosin that is both clear and unambiguous. Moreover, the authors have ensured that the new names are linked with their sequences in the NCBI database, thus eliminating the uncertainty of linking a protein isoform with its sequence. This nomenclature system has been planned with the support of all the major labs that work with tropomyosin. We recommend that all researchers take note of this scheme and use it.


Asunto(s)
Tropomiosina/clasificación , Tropomiosina/metabolismo , Animales , Humanos
17.
Circ Res ; 112(4): 633-9, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23277198

RESUMEN

RATIONALE: Cardiac myosin-binding protein C (cMyBP-C) regulates cross-bridge cycling kinetics and, thereby, fine-tunes the rate of cardiac muscle contraction and relaxation. Its effects on cardiac kinetics are modified by phosphorylation. Three phosphorylation sites (Ser275, Ser284, and Ser304) have been identified in vivo, all located in the cardiac-specific M-domain of cMyBP-C. However, recent work has shown that up to 4 phosphate groups are present in human cMyBP-C. OBJECTIVE: To identify and characterize additional phosphorylation sites in human cMyBP-C. METHODS AND RESULTS: Cardiac MyBP-C was semipurified from human heart tissue. Tandem mass spectrometry analysis identified a novel phosphorylation site on serine 133 in the proline-alanine-rich linker sequence between the C0 and C1 domains of cMyBP-C. Unlike the known sites, Ser133 was not a target of protein kinase A. In silico kinase prediction revealed glycogen synthase kinase 3ß (GSK3ß) as the most likely kinase to phosphorylate Ser133. In vitro incubation of the C0C2 fragment of cMyBP-C with GSK3ß showed phosphorylation on Ser133. In addition, GSK3ß phosphorylated Ser304, although the degree of phosphorylation was less compared with protein kinase A-induced phosphorylation at Ser304. GSK3ß treatment of single membrane-permeabilized human cardiomyocytes significantly enhanced the maximal rate of tension redevelopment. CONCLUSIONS: GSK3ß phosphorylates cMyBP-C on a novel site, which is positioned in the proline-alanine-rich region and increases kinetics of force development, suggesting a noncanonical role for GSK3ß at the sarcomere level. Phosphorylation of Ser133 in the linker domain of cMyBP-C may be a novel mechanism to regulate sarcomere kinetics.


Asunto(s)
Proteínas Portadoras/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Contracción Miocárdica/fisiología , Secuencia de Aminoácidos , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Proteínas Portadoras/química , Glucógeno Sintasa Quinasa 3 beta , Ventrículos Cardíacos/química , Humanos , Datos de Secuencia Molecular , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Fragmentos de Péptidos/metabolismo , Fosforilación , Fosfoserina/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Sarcómeros/fisiología , Espectrometría de Masas en Tándem
18.
Biophys J ; 107(10): 2369-80, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25418306

RESUMEN

Phosphorylation of troponin I by protein kinase A (PKA) reduces Ca(2+) sensitivity and increases the rate of Ca(2+) release from troponin C and the rate of relaxation in cardiac muscle. In vitro experiments indicate that mutations that cause dilated cardiomyopathy (DCM) uncouple this modulation, but this has not been demonstrated in an intact contractile system. Using a Ca(2+)-jump protocol, we measured the effect of the DCM-causing mutation ACTC E361G on the equilibrium and kinetic parameters of Ca(2+) regulation of contractility in single transgenic mouse heart myofibrils. We used propranolol treatment of mice to reduce the level of troponin I and myosin binding protein C (MyBP-C) phosphorylation in their hearts before isolating the myofibrils. In nontransgenic mouse myofibrils, the Ca(2+) sensitivity of force was increased, the fast relaxation phase rate constant, kREL, was reduced, and the length of the slow linear phase, tLIN, was increased when the troponin I phosphorylation level was reduced from 1.02 to 0.3 molPi/TnI (EC50 P/unP = 1.8 ± 0.2, p < 0.001). Native myofibrils from ACTC E361G transgenic mice had a 2.4-fold higher Ca(2+) sensitivity than nontransgenic mouse myofibrils. Strikingly, the Ca(2+) sensitivity and relaxation parameters of ACTC E361G myofibrils did not depend on the troponin I phosphorylation level (EC50 P/unP = 0.88 ± 0.17, p = 0.39). Nevertheless, modulation of the Ca(2+) sensitivity of ACTC E361G myofibrils by sarcomere length or EMD57033 was indistinguishable from that of nontransgenic myofibrils. Overall, EC50 measured in different conditions varied over a 7-fold range. The time course of relaxation, as defined by tLIN and kREL, was correlated with EC50 but varied by just 2.7- and 3.3-fold, respectively. Our results confirm that troponin I phosphorylation specifically alters the Ca(2+) sensitivity of isometric tension and the time course of relaxation in cardiac muscle myofibrils. Moreover, the DCM-causing mutation ACTC E361G blunts this phosphorylation-dependent response without affecting other parameters of contraction, including length-dependent activation and the response to EMD57033.


Asunto(s)
Actinas/genética , Calcio/metabolismo , Cardiomiopatía Dilatada/genética , Mutación , Miofibrillas/metabolismo , Troponina I/metabolismo , Animales , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Contracción Muscular/efectos de los fármacos , Miofibrillas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Propranolol/farmacología , Quinolinas/farmacología , Sarcómeros/efectos de los fármacos , Sarcómeros/metabolismo , Tiadiazinas/farmacología
19.
Hum Mutat ; 35(7): 779-90, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24692096

RESUMEN

Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca(2+) sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin-actin association or tropomyosin head-to-tail binding.


Asunto(s)
Estudios de Asociación Genética , Enfermedades Musculares/congénito , Enfermedades Musculares/genética , Mutación , Tropomiosina/genética , Actinas/metabolismo , Adolescente , Adulto , Secuencia de Aminoácidos , Niño , Preescolar , Bases de Datos Genéticas , Femenino , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/diagnóstico , Fenotipo , Fosforilación , Unión Proteica , Alineación de Secuencia , Tropomiosina/química , Tropomiosina/metabolismo , Adulto Joven
20.
J Biol Chem ; 288(7): 4891-8, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23271734

RESUMEN

We studied O-linked ß-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent tag and CTD110.6 and RL2 monoclonal antibodies to O-GlcNAc. All three methods showed that O-GlcNAc modification was predominantly in a group of bands ~90 kDa that did not correspond to any of the major myofibrillar proteins. MALDI-MS/MS identified the 90-kDa band as the protein ZASP (Z-band alternatively spliced PDZ motif protein), a minor component of the Z-disc (about 1 per 400 α-actinin) important for myofibrillar development and mechanotransduction. This was confirmed by the co-localization of O-GlcNAc and ZASP in Western blotting and by immunofluorescence microscopy. O-GlcNAcylation of ZASP increased in diseased heart, being 49 ± 5% of all O-GlcNAc in donor, 68 ± 9% in end-stage failing heart, and 76 ± 6% in myectomy muscle samples (donor versus myectomy p < 0.05). ZASP is only 22% of all O-GlcNAcylated proteins in mouse heart myofibrils.


Asunto(s)
Acetilglucosamina/química , Proteínas Adaptadoras Transductoras de Señales/fisiología , Regulación de la Expresión Génica , Corazón/fisiología , Proteínas con Dominio LIM/fisiología , Miofibrillas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Técnica del Anticuerpo Fluorescente Indirecta/métodos , Humanos , Proteínas con Dominio LIM/metabolismo , Microscopía Fluorescente/métodos , Datos de Secuencia Molecular , Péptidos/química , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA