RESUMEN
Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.
Asunto(s)
Sitios de Empalme de ARN , Empalme del ARN , Humanos , Sitios de Empalme de ARN/genética , Intrones/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismoRESUMEN
Transcription termination of non-coding RNAs is regulated in yeast by a complex of three RNA binding proteins: Nrd1, Nab3 and Sen1. Nrd1 is central in this process by interacting with Rbp1 of RNA polymerase II, Trf4 of TRAMP and GUAA/G terminator sequences. We lack structural data for the last of these binding events. We determined the structures of Nrd1 RNA binding domain and its complexes with three GUAA-containing RNAs, characterized RNA binding energetics and tested rationally designed mutants in vivo. The Nrd1 structure shows an RRM domain fused with a second α/ß domain that we name split domain (SD), because it is formed by two non-consecutive segments at each side of the RRM. The GUAA interacts with both domains and with a pocket of water molecules, trapped between the two stacking adenines and the SD. Comprehensive binding studies demonstrate for the first time that Nrd1 has a slight preference for GUAA over GUAG and genetic and functional studies suggest that Nrd1 RNA binding domain might play further roles in non-coding RNAs transcription termination.
Asunto(s)
Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Terminación de la Transcripción Genética , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Especificidad por SustratoRESUMEN
BACKGROUND: Protein quality control mechanisms are essential for cell health and involve delivery of proteins to specific cellular compartments for recycling or degradation. In particular, stray hydrophobic proteins are captured in the aqueous cytosol by a co-chaperone, the small glutamine-rich, tetratricopeptide repeat-containing protein alpha (SGTA), which facilitates the correct targeting of tail-anchored membrane proteins, as well as the sorting of membrane and secretory proteins that mislocalize to the cytosol and endoplasmic reticulum-associated degradation. Full-length SGTA has an unusual elongated dimeric structure that has, until now, evaded detailed structural analysis. The C-terminal region of SGTA plays a key role in binding a broad range of hydrophobic substrates, yet in contrast to the well-characterized N-terminal and TPR domains, there is a lack of structural information on the C-terminal domain. In this study, we present new insights into the conformation and organization of distinct domains of SGTA and show that the C-terminal domain possesses a conserved region essential for substrate processing in vivo. RESULTS: We show that the C-terminal domain region is characterized by α-helical propensity and an intrinsic ability to dimerize independently of the N-terminal domain. Based on the properties of different regions of SGTA that are revealed using cell biology, NMR, SAXS, Native MS, and EPR, we observe that its C-terminal domain can dimerize in the full-length protein and propose that this reflects a closed conformation of the substrate-binding domain. CONCLUSION: Our results provide novel insights into the structural complexity of SGTA and provide a new basis for mechanistic studies of substrate binding and release at the C-terminal region.
Asunto(s)
Proteínas Portadoras/química , Chaperonas Moleculares/química , Secuencia de Aminoácidos , Animales , Células Cultivadas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Transporte de Proteínas , Dispersión del Ángulo PequeñoRESUMEN
Sporulation in Bacillus subtilis is governed by a cascade of alternative RNA polymerase sigma factors. We previously identified a small protein Fin that is produced under the control of the sporulation sigma factor σF to create a negative feedback loop that inhibits σF -directed gene transcription. Cells deleted for fin are defective for spore formation and exhibit increased levels of σF -directed gene transcription. Based on pull-down experiments, chemical crosslinking, bacterial two-hybrid experiments and nuclear magnetic resonance chemical shift analysis, we now report that Fin binds to RNA polymerase and specifically to the coiled-coil region of the ß' subunit. The coiled-coil is a docking site for sigma factors on RNA polymerase, and evidence is presented that the binding of Fin and σF to RNA polymerase is mutually exclusive. We propose that Fin functions by a mechanism distinct from that of classic sigma factor antagonists (anti-σ factors), which bind directly to a target sigma factor to prevent its association with RNA polymerase, and instead functions to inhibit σF by competing for binding to the ß' coiled-coil.
Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/fisiología , Factor sigma/fisiología , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/metabolismo , Factor sigma/metabolismo , Esporas Bacterianas/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genéticaRESUMEN
Metazoan SR and SR-like proteins are important regulatory factors in RNA splicing, export, translation and RNA decay. We determined the NMR structures and nucleic acid interaction modes of Gbp2 and Hrb1, two paralogous budding yeast proteins with similarities to mammalian SR proteins. Gbp2 RRM1 and RRM2 recognise preferentially RNAs containing the core motif GGUG. Sequence selectivity resides in a non-canonical interface in RRM2 that is highly related to the SRSF1 pseudoRRM. The atypical Gbp2/Hrb1 C-terminal RRM domains (RRM3) do not interact with RNA/DNA, likely because of their novel N-terminal extensions that block the canonical RNA binding interface. Instead, we discovered that RRM3 is crucial for interaction with the THO/TREX complex and identified key residues essential for this interaction. Moreover, Gbp2 interacts genetically with Tho2 as the double deletion shows a synthetic phenotype and preventing Gbp2 interaction with the THO/TREX complex partly supresses gene expression defect associated with inactivation of the latter complex. These findings provide structural and functional insights into the contribution of SR-like proteins in the post-transcriptional control of gene expression.
Asunto(s)
Complejos Multiproteicos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectroscopía de Resonancia Magnética con Carbono-13 , ADN/metabolismo , Modelos Moleculares , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , Conformación Proteica , Espectroscopía de Protones por Resonancia Magnética , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Telómero/genética , Telómero/metabolismoRESUMEN
Splicing is a critical processing step during pre-mRNA maturation in eukaryotes. The correct selection of splice sites during the early steps of spliceosome assembly is highly important and crucial for the regulation of alternative splicing. Splice site recognition and alternative splicing depend on cis-regulatory sequence elements in the RNA and trans-acting splicing factors that recognize these elements and crosstalk with the canonical splicing machinery. Structural mechanisms involving early spliceosome complexes are governed by dynamic RNA structures, protein-RNA interactions and conformational flexibility of multidomain RNA binding proteins. Here, we highlight structural studies and integrative structural biology approaches, which provide complementary information from cryo-EM, NMR, small angle scattering, and X-ray crystallography to elucidate mechanisms in the regulation of early spliceosome assembly and quality control, highlighting the role of conformational dynamics.
Asunto(s)
Empalmosomas , Empalmosomas/metabolismo , Empalmosomas/química , Humanos , Empalme del ARN , Unión Proteica , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Modelos MolecularesRESUMEN
PRPF40A plays an important role in the regulation of pre-mRNA splicing by mediating protein-protein interactions in the early steps of spliceosome assembly. By binding to proteins at the 5´ and 3´ splice sites, PRPF40A promotes spliceosome assembly by bridging the recognition of the splices. The PRPF40A WW domains are expected to recognize proline-rich sequences in SF1 and SF3A1 in the early spliceosome complexes E and A, respectively. Here, we combine NMR, SAXS and ITC to determine the structure of the PRPF40A tandem WW domains in solution and characterize the binding specificity and mechanism for proline-rich motifs recognition. Our structure of the PRPF40A WW tandem in complex with a high-affinity SF1 peptide reveals contributions of both WW domains, which also enables tryptophan sandwiching by two proline residues in the ligand. Unexpectedly, a proline-rich motif in the N-terminal region of PRPF40A mediates intramolecular interactions with the WW tandem. Using NMR, ITC, mutational analysis in vitro, and immunoprecipitation experiments in cells, we show that the intramolecular interaction acts as an autoinhibitory filter for proof-reading of high-affinity proline-rich motifs in bona fide PRPF40A binding partners. We propose that similar autoinhibitory mechanisms are present in most WW tandem-containing proteins to enhance binding selectivity and regulation of WW/proline-rich peptide interaction networks.
Asunto(s)
Prolina , Unión Proteica , Dominios WW , Humanos , Secuencias de Aminoácidos , Modelos Moleculares , Prolina/metabolismo , Prolina/química , Empalme del ARN , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Dispersión del Ángulo Pequeño , Empalmosomas/metabolismo , Difracción de Rayos XRESUMEN
Understanding the structure and dynamics of biological macromolecules is essential to decipher the molecular mechanisms that underlie cellular functions. The description of structure and conformational dynamics often requires the integration of complementary techniques. In this review, we highlight the utility of combining nuclear magnetic resonance (NMR) spectroscopy with small angle scattering (SAS) to characterize these challenging biomolecular systems. NMR can assess the structure and conformational dynamics of multidomain proteins, RNAs and biomolecular complexes. It can efficiently provide information on interaction surfaces, long-distance restraints and relative domain orientations at residue-level resolution. Such information can be readily combined with high-resolution structural data available on subcomponents of biomolecular assemblies. Moreover, NMR is a powerful tool to characterize the dynamics of biomolecules on a wide range of timescales, from nanoseconds to seconds. On the other hand, SAS approaches provide global information on the size and shape of biomolecules and on the ensemble of all conformations present in solution. Therefore, NMR and SAS provide complementary data that are uniquely suited to investigate dynamic biomolecular assemblies. Here, we briefly review the type of data that can be obtained by both techniques and describe different approaches that can be used to combine them to characterize biomolecular assemblies. We then provide guidelines on which experiments are best suited depending on the type of system studied, ranging from fully rigid complexes, dynamic structures that interconvert between defined conformations and systems with very high structural heterogeneity.
Asunto(s)
Proteínas , Difracción de Rayos X , Dispersión del Ángulo Pequeño , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Espectroscopía de Resonancia Magnética , Conformación ProteicaRESUMEN
The RNA-binding motif protein RBM5 belongs to a family of multi-domain RNA binding proteins that regulate alternative splicing of genes important for apoptosis and cell proliferation and have been implicated in cancer. RBM5 harbors structural modules for RNA recognition, such as RRM domains and a Zn finger, and protein-protein interactions such as an OCRE domain. Here, we characterize binding of the RBM5 RRM1-ZnF1-RRM2 domains to cis-regulatory RNA elements. A structure of the RRM1-ZnF1 region in complex with RNA shows how the tandem domains cooperate to sandwich target RNA and specifically recognize a GG dinucleotide in a non-canonical fashion. While the RRM1-ZnF1 domains act as a single structural module, RRM2 is connected by a flexible linker and tumbles independently. However, all three domains participate in RNA binding and adopt a closed architecture upon RNA binding. Our data highlight how cooperativity and conformational modularity of multiple RNA binding domains enable the recognition of distinct RNA motifs, thereby contributing to the regulation of alternative splicing. Remarkably, we observe surprising differences in coupling of the RNA binding domains between the closely related homologs RBM5 and RBM10.
Asunto(s)
Empalme Alternativo , ARN , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Motivos de Nucleótidos , Empalme del ARNRESUMEN
Yeast eIF4G1 interacts with RNA binding proteins (RBPs) like Pab1 and Pub1 affecting its function in translation initiation and stress granules formation. We present an NMR and SAXS study of the N-terminal intrinsically disordered region of eIF4G1 (residues 1-249) and its interactions with Pub1, Pab1 and RNA. The conformational ensemble of eIF4G11-249 shows an α-helix within the BOX3 conserved element and a dynamic network of fuzzy π-π and π-cation interactions involving arginine and aromatic residues. The Pab1 RRM2 domain interacts with eIF4G1 BOX3, the canonical interaction site, but also with BOX2, a conserved element of unknown function to date. The RNA1 region interacts with RNA through a new RNA interaction motif and with the Pub1 RRM3 domain. This later also interacts with eIF4G1 BOX1 modulating its intrinsic self-assembly properties. The description of the biomolecular interactions involving eIF4G1 to the residue detail increases our knowledge about biological processes involving this key translation initiation factor.
RESUMEN
Heterodimerization of RNA binding proteins Nrd1 and Nab3 is essential to communicate the RNA recognition in the nascent transcript with the Nrd1 recognition of the Ser5-phosphorylated Rbp1 C-terminal domain in RNA polymerase II. The structure of a Nrd1-Nab3 chimera reveals the basis of heterodimerization, filling a missing gap in knowledge of this system. The free form of the Nrd1 interaction domain of Nab3 (NRID) forms a multi-state three-helix bundle that is clamped in a single conformation upon complex formation with the Nab3 interaction domain of Nrd1 (NAID). The latter domain forms two long helices that wrap around NRID, resulting in an extensive protein-protein interface that would explain the highly favorable free energy of heterodimerization. Mutagenesis of some conserved hydrophobic residues involved in the heterodimerization leads to temperature-sensitive phenotypes, revealing the importance of this interaction in yeast cell fitness. The Nrd1-Nab3 structure resembles the previously reported Rna14/Rna15 heterodimer structure, which is part of the poly(A)-dependent termination pathway, suggesting that both machineries use similar structural solutions despite they share little sequence homology and are potentially evolutionary divergent.
Asunto(s)
Proteínas Nucleares , Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Calorimetría , Dicroismo Circular , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación Proteica , Multimerización de Proteína/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Escisión y Poliadenilación de ARNm/química , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismoRESUMEN
The multi-domain RNA binding protein RBM5 is a molecular signature of metastasis. RBM5 regulates alternative splicing of apoptotic genes including the cell death receptor Fas and the initiator Caspase-2. The RBM5 RanBP2-type zinc finger (Zf1) is known to specifically recognize single-stranded RNAs with high affinity. Here, we study the structure and conformational dynamics of the Zf1 zinc finger of human RBM5 using NMR. We show that the presence of a non-canonical cysteine in Zf1 kinetically destabilizes the protein. Metal-exchange kinetics show that mutation of the cysteine establishes high-affinity coordination of the zinc. Our data indicate that selection of such a structurally destabilizing mutation during the course of evolution could present an opportunity for functional adaptation of the protein.
Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Chaperonas Moleculares/ultraestructura , Proteínas de Complejo Poro Nuclear/ultraestructura , Proteínas de Unión al ARN/ultraestructura , Proteínas Supresoras de Tumor/ultraestructura , Dedos de Zinc/genética , Empalme Alternativo/genética , Secuencia de Aminoácidos/genética , Apoptosis/genética , Caspasa 2/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Unión Proteica/genética , Conformación Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Zinc/químicaRESUMEN
Global changes in bacterial gene expression can be orchestrated by the coordinated activation/deactivation of alternative sigma (σ) factor subunits of RNA polymerase. Sigma factors themselves are regulated in myriad ways, including via anti-sigma factors. Here, we have determined the solution structure of anti-sigma factor CsfB, responsible for inhibition of two alternative sigma factors, σG and σE, during spore formation by Bacillus subtilis. CsfB assembles into a symmetrical homodimer, with each monomer bound to a single Zn2+ ion via a treble-clef zinc finger fold. Directed mutagenesis indicates that dimer formation is critical for CsfB-mediated inhibition of both σG and σE, and we have characterized these interactions in vitro. This work represents an advance in our understanding of how CsfB mediates inhibition of two alternative sigma factors to drive developmental gene expression in a bacterium.
Asunto(s)
Bacillus subtilis/química , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/química , Factor sigma/química , Esporas Bacterianas/química , Zinc/química , Secuencia de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Sitios de Unión , Cationes Bivalentes , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factor sigma/antagonistas & inhibidores , Factor sigma/genética , Factor sigma/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Zinc/metabolismoRESUMEN
Small glutamine-rich tetratricopeptide repeat-containing protein 2 (Sgt2) is a multi-module co-chaperone involved in several protein quality control pathways. The TPR domain of Sgt2 and several other proteins, including SGTA, Hop, and CHIP, is a highly conserved motif known to form transient complexes with molecular chaperones such as Hsp70 and Hsp90. In this work, we present the first high resolution crystal structures of Sgt2_TPR alone and in complex with a C-terminal peptide PTVEEVD from heat shock protein, Ssa1. Using nuclear magnetic resonance spectroscopy and isothermal titration calorimetry, we demonstrate that Sgt2_TPR interacts with peptides corresponding to the C-termini of Ssa1, Hsc82, and Ybr137wp with similar binding modes and affinities.
RESUMEN
RNF126 is an E3 ubiquitin ligase that collaborates with the BAG6 sortase complex to ubiquitinate hydrophobic substrates in the cytoplasm that are destined for proteasomal recycling. Composed of a trimeric complex of BAG6, TRC35 and UBL4A the BAG6 sortase is also associated with SGTA, a co-chaperone from which it can obtain hydrophobic substrates. Here we solve the solution structure of the RNF126 zinc finger domain in complex with the BAG6 UBL domain. We also characterise an interaction between RNF126 and UBL4A and analyse the competition between SGTA and RNF126 for the N-terminal BAG6 binding site. This work sheds light on the sorting mechanism of the BAG6 complex and its accessory proteins which, together, decide the fate of stray hydrophobic proteins in the aqueous cytoplasm.
Asunto(s)
Complejos Multiproteicos/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/química , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Ubiquitinas/química , Ubiquitinas/metabolismo , Dedos de ZincRESUMEN
The fate of secretory and membrane proteins that mislocalize to the cytosol is decided by a collaboration between cochaperone SGTA (small, glutamine-rich, tetratricopeptide repeat protein alpha) and the BAG6 complex, whose operation relies on multiple transient and subtly discriminated interactions with diverse binding partners. These include chaperones, membrane-targeting proteins and ubiquitination enzymes. Recently a direct interaction was discovered between SGTA and the proteasome, mediated by the intrinsic proteasomal ubiquitin receptor Rpn13. Here, we structurally and biophysically characterize this binding and identify a region of the Rpn13 C-terminal domain that is necessary and sufficient to facilitate it. We show that the contact occurs through a carboxylate clamp-mediated molecular recognition event with the TPR domain of SGTA, and provide evidence that the interaction can mediate the association of Rpn13 and SGTA in a cellular context.
Asunto(s)
Proteínas Portadoras/química , Glicoproteínas de Membrana/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares , Unión Proteica , Dominios ProteicosRESUMEN
The small glutamine-rich, tetratricopeptide repeat-containing protein alpha (SGTA) is an emerging player in the quality control of secretory and membrane proteins mislocalized to the cytosol, with established roles in tail-anchored (TA) membrane protein biogenesis. SGTA consists of three structural domains with individual functions, an N-terminal dimerization domain that assists protein sorting pathways, a central tetratricopeptide repeat (TPR) domain that mediates interactions with heat-shock proteins, proteasomal, and hormonal receptors, and viral proteins, and a C-terminal glutamine rich region that binds hydrophobic substrates. SGTA has been linked to viral lifecycles and hormone receptor signaling, with implications in the pathogenesis of various disease states. Thus far, a range of biophysical techniques have been employed to characterize SGTA structure in some detail, and to investigate its interactions with binding partners in different biological contexts. A complete description of SGTA structure, together with further investigation into its function as a co-chaperone involved quality control, could provide us with useful insights into its role in maintaining cellular proteostasis, and broaden our understanding of mechanisms underlying associated pathologies. This review describes how some structural features of SGTA have been elucidated, and what this has uncovered about its cellular functions. A brief background on the structure and function of SGTA is given, highlighting its importance to biomedicine and related fields. The current level of knowledge and what remains to be understood about the structure and function of SGTA is summarized, discussing the potential direction of future research.
RESUMEN
BACKGROUND: The BAG6 complex resides in the cytosol and acts as a sorting point to target diverse hydrophobic protein substrates along their appropriate paths, including proteasomal degradation and ER membrane insertion. Composed of a trimeric complex of BAG6, TRC35 and UBL4A, the BAG6 complex is closely associated with SGTA, a co-chaperone from which it can obtain hydrophobic substrates. METHODOLOGY AND PRINCIPAL FINDINGS: SGTA consists of an N-terminal dimerisation domain (SGTA_NT), a central tetratricopeptide repeat (TPR) domain, and a glutamine rich region towards the C-terminus. Here we solve a solution structure of the SGTA dimerisation domain and use biophysical techniques to investigate its interaction with two different UBL domains from the BAG6 complex. The SGTA_NT structure is a dimer with a tight hydrophobic interface connecting two sets of four alpha helices. Using a combination of NMR chemical shift perturbation, isothermal titration calorimetry (ITC) and microscale thermophoresis (MST) experiments we have biochemically characterised the interactions of SGTA with components of the BAG6 complex, the ubiquitin-like domain (UBL) containing proteins UBL4A and BAG6. We demonstrate that the UBL domains from UBL4A and BAG6 directly compete for binding to SGTA at the same site. Using a combination of structural and interaction data we have implemented the HADDOCK protein-protein interaction docking tool to generate models of the SGTA-UBL complexes. SIGNIFICANCE: This atomic level information contributes to our understanding of the way in which hydrophobic proteins have their fate decided by the collaboration between SGTA and the BAG6 complex.
Asunto(s)
Proteínas Portadoras/química , Chaperonas Moleculares/química , Multimerización de Proteína , Estructura Terciaria de Proteína , Ubiquitinas/química , Animales , Sitios de Unión , Unión Competitiva , Proteínas Portadoras/metabolismo , Biología Computacional/métodos , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Programas Informáticos , Soluciones , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinas/metabolismoRESUMEN
The seven C-terminal CCCH-type zinc fingers of Nab2p bind the poly(A) tail of mRNA (â¼A25). Using NMR, we demonstrated that the first four (Zf1-Zf4) contain two structurally independent tandems (TZF12 and TZF34) and bind A12 with moderate affinity (KD = 2.3 µM). Nab2p TZF12 contains a long α helix that contacts the zinc fingers Zf1 and Zf2 to arrange them similarly to Zf6-7 in the Nab2p Zf5-7 structure. Nab2p TZF34 exhibits a distinctive two-fold symmetry of the zinc centers with mutual recognition of histidine ligands. Our mutagenesis and NMR data demonstrate that the α helix of TZF12 and Zf3 of TZF34 define the RNA-binding interface, while Zf1, Zf2, and Zf4 seem to be excluded. These results further our understanding of polyadenosine RNA recognition by the CCCH domain of Nab2p. Moreover, we describe a hypothetical mechanism for controlling poly(A) tail length with specific roles for TZF12, TZF34, and Zf5-7 domains.
Asunto(s)
Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Unión al ARN/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Secuencia Conservada , Complejos de Coordinación/química , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Proteínas de Transporte Nucleocitoplasmático/genética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología Estructural de Proteína , Termodinámica , Dedos de ZincRESUMEN
Pub1p, a highly abundant poly(A)+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3) shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM). Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to ß-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1-402) of yeast eIF4G1 (Tif4631p), very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role.