Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Biol Interact ; 379: 110519, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37121298

RESUMEN

The proximal tubule is a target of subchronic exposure to fluoride (F) in the kidney. Early markers are used to classify kidney damage, stage, and prognosis. MicroRNAs (miRNAs) are small sequences of non-coding single-stranded RNA that regulate gene expression and play an essential role in developing many pathologies, including renal diseases. This study aimed to evaluate the expression of Cytokine-Chemokine molecules (IL-1α/1ß/4/6/10, INF-γ, MIP-1α, MCP-1, RANTES, and TGF ß1/2/3) and inflammation-related miRNAs to evidence the possible renal mechanisms involved in subchronic exposure to F. Total protein and miRNAs were obtained from the renal cortex of male Wistar rats exposed to 0, 15 and 50 mg NaF/L through drinking water during 40 and 80 days. In addition, cytokines-chemokines were analyzed by multiplexing assay, and a panel of 77 sequences of inflammatory-related miRNAs was analyzed by qPCR. The results show that cytokines-chemokines expression was concentration- and time-dependent with F, where the 50 mg NaF/L were the main altered groups. The miRNAs expression resulted in statistically significant differences in thirty-four miRNAs in the 50 mg NaF/L groups at 40 and 80 days. Furthermore, a molecular interaction network analysis was performed. The relevant pathways modified by subchronic exposure to fluoride were related to extracellular matrix-receptor interaction, Mucin type O-glycan biosynthesis, Gap junction, and miRNAs involved with renal cell carcinoma. Thus, F-induced cytokines-chemokines suggest subchronic inflammation; detecting miRNAs related to cancer and proliferation indicates a transition from renal epithelium to pathologic tissue after fluoride exposure.


Asunto(s)
MicroARNs , Neoplasias , Ratas , Masculino , Animales , Fluoruros/toxicidad , MicroARNs/genética , MicroARNs/metabolismo , Ratas Wistar , Citocinas/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Inflamación/inducido químicamente
2.
PeerJ ; 7: e6127, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31249729

RESUMEN

BACKGROUND: A great number of studies have shown that the distribution of microorganisms in the soil is not random, but that their abundance changes along environmental gradients (spatial patterns). The present study examined the spatial variability of the physicochemical characteristics of an extreme alkaline saline soil and how they controlled the archaeal and bacterial communities so as to determine the main spatial community drivers. METHODS: The archaeal and bacterial community structure, and soil characteristics were determined at 13 points along a 211 m transect in the former lake Texcoco. Geostatistical techniques were used to describe spatial patterns of the microbial community and soil characteristics and determine soil properties that defined the prokaryotic community structure. RESULTS: A high variability in electrolytic conductivity (EC) and water content (WC) was found. Euryarchaeota dominated Archaea, except when the EC was low. Proteobacteria, Bacteroidetes and Actinobacteria were the dominant bacterial phyla independent of large variations in certain soil characteristics. Multivariate analysis showed that soil WC affected the archaeal community structure and a geostatistical analysis found that variation in the relative abundance of Euryarchaeota was controlled by EC. The bacterial alpha diversity was less controlled by soil characteristics at the scale of this study than the archaeal alpha diversity. DISCUSSION: Results indicated that WC and EC played a major role in driving the microbial communities distribution and scale and sampling strategies were important to define spatial patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA