Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 168(3): 473-486.e15, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28129541

RESUMEN

Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.


Asunto(s)
Quimerismo , Edición Génica , Mamíferos/embriología , Animales , Blastocisto , Sistemas CRISPR-Cas , Bovinos , Embrión de Mamíferos/citología , Femenino , Humanos , Masculino , Mamíferos/clasificación , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Células Madre Pluripotentes , Ratas , Ratas Sprague-Dawley , Sus scrofa
2.
Cell ; 167(7): 1719-1733.e12, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984723

RESUMEN

Aging is the major risk factor for many human diseases. In vitro studies have demonstrated that cellular reprogramming to pluripotency reverses cellular age, but alteration of the aging process through reprogramming has not been directly demonstrated in vivo. Here, we report that partial reprogramming by short-term cyclic expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) ameliorates cellular and physiological hallmarks of aging and prolongs lifespan in a mouse model of premature aging. Similarly, expression of OSKM in vivo improves recovery from metabolic disease and muscle injury in older wild-type mice. The amelioration of age-associated phenotypes by epigenetic remodeling during cellular reprogramming highlights the role of epigenetic dysregulation as a driver of mammalian aging. Establishing in vivo platforms to modulate age-associated epigenetic marks may provide further insights into the biology of aging.


Asunto(s)
Envejecimiento/genética , Reprogramación Celular , Epigénesis Genética , Enfermedades Metabólicas/genética , Factores de Transcripción/metabolismo , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Animales , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Lamina Tipo A/genética , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/prevención & control , Ratones , Modelos Animales , Páncreas/metabolismo , Sarcopenia/metabolismo
4.
Semin Cell Dev Biol ; 97: 3-15, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31028854

RESUMEN

Epigenetic regulation of gene expression is fundamental in the maintenance of cellular identity and the regulation of cellular plasticity during tissue repair. In fact, epigenetic modulation is associated with the processes of cellular de-differentiation, proliferation, and re-differentiation that takes place during tissue regeneration. In here we explore the epigenetic events that coordinate tissue repair in lower vertebrates with high regenerative capacity, and in mammalian adult stem cells, which are responsible for the homeostasis maintenance of most of our tissues. Finally we summarize promising CRISPR-based editing technologies developed during the last years, which look as promising tools to not only study but also promote specific events during tissue regeneration.


Asunto(s)
Cromatina/metabolismo , Epigénesis Genética/genética , Regeneración/efectos de los fármacos , Humanos
5.
Nature ; 540(7632): 270-275, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27919073

RESUMEN

Maternally inherited mitochondrial (mt)DNA mutations can cause fatal or severely debilitating syndromes in children, with disease severity dependent on the specific gene mutation and the ratio of mutant to wild-type mtDNA (heteroplasmy) in each cell and tissue. Pathogenic mtDNA mutations are relatively common, with an estimated 778 affected children born each year in the United States. Mitochondrial replacement therapies or techniques (MRT) circumventing mother-to-child mtDNA disease transmission involve replacement of oocyte maternal mtDNA. Here we report MRT outcomes in several families with common mtDNA syndromes. The mother's oocytes were of normal quality and mutation levels correlated with those in existing children. Efficient replacement of oocyte mutant mtDNA was performed by spindle transfer, resulting in embryos containing >99% donor mtDNA. Donor mtDNA was stably maintained in embryonic stem cells (ES cells) derived from most embryos. However, some ES cell lines demonstrated gradual loss of donor mtDNA and reversal to the maternal haplotype. In evaluating donor-to-maternal mtDNA interactions, it seems that compatibility relates to mtDNA replication efficiency rather than to mismatch or oxidative phosphorylation dysfunction. We identify a polymorphism within the conserved sequence box II region of the D-loop as a plausible cause of preferential replication of specific mtDNA haplotypes. In addition, some haplotypes confer proliferative and growth advantages to cells. Hence, we propose a matching paradigm for selecting compatible donor mtDNA for MRT.


Asunto(s)
ADN Mitocondrial/genética , ADN Mitocondrial/uso terapéutico , Herencia Materna/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Terapia de Reemplazo Mitocondrial/métodos , Mutación , Oocitos/metabolismo , Blastocisto/citología , Blastocisto/metabolismo , Línea Celular , Secuencia Conservada/genética , ADN Mitocondrial/biosíntesis , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Haplotipos/genética , Humanos , Masculino , Meiosis , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/prevención & control , Donación de Oocito , Oocitos/citología , Oocitos/patología , Fosforilación Oxidativa , Linaje , Polimorfismo Genético
6.
Genes Dev ; 27(6): 639-53, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23468428

RESUMEN

The establishment of the epigenetic mark H4K20me1 (monomethylation of H4K20) by PR-Set7 during G2/M directly impacts S-phase progression and genome stability. However, the mechanisms involved in the regulation of this event are not well understood. Here we show that SirT2 regulates H4K20me1 deposition through the deacetylation of H4K16Ac (acetylation of H4K16) and determines the levels of H4K20me2/3 throughout the cell cycle. SirT2 binds and deacetylates PR-Set7 at K90, modulating its chromatin localization. Consistently, SirT2 depletion significantly reduces PR-Set7 chromatin levels, alters the size and number of PR-Set7 foci, and decreases the overall mitotic deposition of H4K20me1. Upon stress, the interaction between SirT2 and PR-Set7 increases along with the H4K20me1 levels, suggesting a novel mitotic checkpoint mechanism. SirT2 loss in mice induces significant defects associated with defective H4K20me1-3 levels. Accordingly, SirT2-deficient animals exhibit genomic instability and chromosomal aberrations and are prone to tumorigenesis. Our studies suggest that the dynamic cross-talk between the environment and the genome during mitosis determines the fate of the subsequent cell cycle.


Asunto(s)
Ciclo Celular/fisiología , Inestabilidad Genómica , Sirtuina 2/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Transformación Celular Neoplásica/genética , Cromatina/metabolismo , Daño del ADN/genética , Técnicas de Inactivación de Genes , Células HeLa , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Metilación , Ratones , Ratones Noqueados , Mitosis , Unión Proteica , Sirtuina 2/genética
7.
EMBO J ; 35(14): 1488-503, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27225932

RESUMEN

Sirtuins, a family of protein deacetylases, promote cellular homeostasis by mediating communication between cells and environment. The enzymatic activity of the mammalian sirtuin SIRT7 targets acetylated lysine in the N-terminal tail of histone H3 (H3K18Ac), thus modulating chromatin structure and transcriptional competency. SIRT7 deletion is associated with reduced lifespan in mice through unknown mechanisms. Here, we show that SirT7-knockout mice suffer from partial embryonic lethality and a progeroid-like phenotype. Consistently, SIRT7-deficient cells display increased replication stress and impaired DNA repair. SIRT7 is recruited in a PARP1-dependent manner to sites of DNA damage, where it modulates H3K18Ac levels. H3K18Ac in turn affects recruitment of the damage response factor 53BP1 to DNA double-strand breaks (DSBs), thereby influencing the efficiency of non-homologous end joining (NHEJ). These results reveal a direct role for SIRT7 in DSB repair and establish a functional link between SIRT7-mediated H3K18 deacetylation and the maintenance of genome integrity.


Asunto(s)
Daño del ADN , Reparación del ADN por Unión de Extremidades , ADN/metabolismo , Sirtuinas/metabolismo , Animales , Ratones Endogámicos C57BL , Ratones Noqueados
8.
Circ Res ; 122(1): 128-141, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29301845

RESUMEN

All living beings undergo systemic physiological decline after ontogeny, characterized as aging. Modern medicine has increased the life expectancy, yet this has created an aged society that has more predisposition to degenerative disorders. Therefore, novel interventions that aim to extend the healthspan in parallel to the life span are needed. Regeneration ability of living beings maintains their biological integrity and thus is the major leverage against aging. However, mammalian regeneration capacity is low and further declines during aging. Therefore, modalities that reinforce regeneration can antagonize aging. Recent advances in the field of regenerative medicine have shown that aging is not an irreversible process. Conversion of somatic cells to embryonic-like pluripotent cells demonstrated that the differentiated state and age of a cell is not fixed. Identification of the pluripotency-inducing factors subsequently ignited the idea that cellular features can be reprogrammed by defined factors that specify the desired outcome. The last decade consequently has witnessed a plethora of studies that modify cellular features including the hallmarks of aging in addition to cellular function and identity in a variety of cell types in vitro. Recently, some of these reprogramming strategies have been directly used in animal models in pursuit of rejuvenation and cell replacement. Here, we review these in vivo reprogramming efforts and discuss their potential use to extend the longevity by complementing or augmenting the regenerative capacity.


Asunto(s)
Envejecimiento/fisiología , Reprogramación Celular/fisiología , Regeneración/fisiología , Medicina Regenerativa/métodos , Rejuvenecimiento/fisiología , Envejecimiento/genética , Envejecimiento/patología , Animales , Senescencia Celular/fisiología , Epigénesis Genética/fisiología , Humanos , Medicina Regenerativa/tendencias
9.
Cell Rep ; 39(4): 110730, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35476977

RESUMEN

Mammals have limited regenerative capacity, whereas some vertebrates, like fish and salamanders, are able to regenerate their organs efficiently. The regeneration in these species depends on cell dedifferentiation followed by proliferation. We generate a mouse model that enables the inducible expression of the four Yamanaka factors (Oct-3/4, Sox2, Klf4, and c-Myc, or 4F) specifically in hepatocytes. Transient in vivo 4F expression induces partial reprogramming of adult hepatocytes to a progenitor state and concomitantly increases cell proliferation. This is indicated by reduced expression of differentiated hepatic-lineage markers, an increase in markers of proliferation and chromatin modifiers, global changes in DNA accessibility, and an acquisition of liver stem and progenitor cell markers. Functionally, short-term expression of 4F enhances liver regenerative capacity through topoisomerase2-mediated partial reprogramming. Our results reveal that liver-specific 4F expression in vivo induces cellular plasticity and counteracts liver failure, suggesting that partial reprogramming may represent an avenue for enhancing tissue regeneration.


Asunto(s)
Reprogramación Celular , Hígado , Animales , Desdiferenciación Celular , Hepatocitos/metabolismo , Hígado/metabolismo , Regeneración Hepática , Mamíferos , Ratones
10.
Nat Commun ; 12(1): 3094, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035273

RESUMEN

Short-term, systemic expression of the Yamanaka reprogramming factors (Oct-3/4, Sox2, Klf4 and c-Myc [OSKM]) has been shown to rejuvenate aging cells and promote tissue regeneration in vivo. However, the mechanisms by which OSKM promotes tissue regeneration are unknown. In this work, we focus on a specific tissue and demonstrate that local expression of OSKM, specifically in myofibers, induces the activation of muscle stem cells or satellite cells (SCs), which accelerates muscle regeneration in young mice. In contrast, expressing OSKM directly in SCs does not improve muscle regeneration. Mechanistically, expressing OSKM in myofibers regulates the expression of genes important for the SC microenvironment, including upregulation of p21, which in turn downregulates Wnt4. This is critical because Wnt4 is secreted by myofibers to maintain SC quiescence. Thus, short-term induction of the Yamanaka factors in myofibers may promote tissue regeneration by modifying the stem cell niche.


Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular/genética , Miofibrillas/metabolismo , Regeneración/genética , Células Satélite del Músculo Esquelético/metabolismo , Nicho de Células Madre , Animales , Células Cultivadas , Femenino , Expresión Génica , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones Transgénicos , Miofibrillas/fisiología , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/genética , Células Satélite del Músculo Esquelético/citología , Proteína Wnt4/genética
11.
Aging Cell ; 16(6): 1404-1413, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28984064

RESUMEN

Sirtuin 2 (SIRT2) is a member of a family of NAD+ -dependent histone deacetylases (HDAC) that play diverse roles in cellular metabolism and especially for aging process. SIRT2 is located in the nucleus, cytoplasm, and mitochondria, is highly expressed in the central nervous system (CNS), and has been reported to regulate a variety of processes including oxidative stress, genome integrity, and myelination. However, little is known about the role of SIRT2 in the nervous system specifically during aging. Here, we show that middle-aged, 13-month-old mice lacking SIRT2 exhibit locomotor dysfunction due to axonal degeneration, which was not present in young SIRT2 mice. In addition, these Sirt2-/- mice exhibit mitochondrial depletion resulting in energy failure, and redox dyshomeostasis. Our results provide a novel link between SIRT2 and physiological aging impacting the axonal compartment of the central nervous system, while supporting a major role for SIRT2 in orchestrating its metabolic regulation. This underscores the value of SIRT2 as a therapeutic target in the most prevalent neurodegenerative diseases that undergo with axonal degeneration associated with redox and energetic dyshomeostasis.


Asunto(s)
Axones/metabolismo , Locomoción/fisiología , Sirtuina 2/deficiencia , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Axones/patología , Cognición/fisiología , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Metabolismo Energético , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Oxidación-Reducción , Sirtuina 2/metabolismo
12.
Science ; 356(6337): 503-508, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28473583

RESUMEN

CpG islands (CGIs) are primarily promoter-associated genomic regions and are mostly unmethylated within highly methylated mammalian genomes. The mechanisms by which CGIs are protected from de novo methylation remain elusive. Here we show that insertion of CpG-free DNA into targeted CGIs induces de novo methylation of the entire CGI in human pluripotent stem cells (PSCs). The methylation status is stably maintained even after CpG-free DNA removal, extensive passaging, and differentiation. By targeting the DNA mismatch repair gene MLH1 CGI, we could generate a PSC model of a cancer-related epimutation. Furthermore, we successfully corrected aberrant imprinting in induced PSCs derived from an Angelman syndrome patient. Our results provide insights into how CpG-free DNA induces de novo CGI methylation and broaden the application of targeted epigenome editing for a better understanding of human development and disease.


Asunto(s)
Islas de CpG , Metilación de ADN , Epigénesis Genética , Células Madre Pluripotentes/metabolismo , ADN/metabolismo , Reparación de la Incompatibilidad de ADN/genética , Reparación del ADN/genética , Humanos , Homólogo 1 de la Proteína MutL/genética , Mutagénesis Insercional , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/genética
13.
Sci Rep ; 7(1): 7594, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28790320

RESUMEN

Activation-induced cytidine deaminase (AID) triggers antibody diversification in B cells by catalysing deamination and subsequently mutating immunoglobulin (Ig) genes. Association of AID with RNA Pol II and occurrence of epigenetic changes during Ig gene diversification suggest participation of AID in epigenetic regulation. AID is mutated in hyper-IgM type 2 (HIGM2) syndrome. Here, we investigated the potential role of AID in the acquisition of epigenetic changes. We discovered that AID binding to the IgH locus promotes an increase in H4K20me3. In 293F cells, we demonstrate interaction between co-transfected AID and the three SUV4-20 histone H4K20 methyltransferases, and that SUV4-20H1.2, bound to the IgH switch (S) mu site, is replaced by SUV4-20H2 upon AID binding. Analysis of HIGM2 mutants shows that the AID truncated form W68X is impaired to interact with SUV4-20H1.2 and SUV4-20H2 and is unable to bind and target H4K20me3 to the Smu site. We finally show in mouse primary B cells undergoing class-switch recombination (CSR) that AID deficiency associates with decreased H4K20me3 levels at the Smu site. Our results provide a novel link between SUV4-20 enzymes and CSR and offer a new aspect of the interplay between AID and histone modifications in setting the epigenetic status of CSR sites.


Asunto(s)
Citidina Desaminasa/genética , Epigénesis Genética/inmunología , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Síndrome de Inmunodeficiencia con Hiper-IgM/genética , Cambio de Clase de Inmunoglobulina/genética , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/patología , Sitios de Unión , Línea Celular Tumoral , Citidina Desaminasa/inmunología , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , N-Metiltransferasa de Histona-Lisina/inmunología , Histonas/inmunología , Humanos , Síndrome de Inmunodeficiencia con Hiper-IgM/inmunología , Síndrome de Inmunodeficiencia con Hiper-IgM/patología , Inmunoglobulina G/genética , Lipopolisacáridos/farmacología , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Mutación , Unión Proteica , ARN Polimerasa II/genética , ARN Polimerasa II/inmunología , Transducción de Señal
15.
Methods Mol Biol ; 1077: 273-83, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24014413

RESUMEN

One of the most important roles of Sirtuins is to ensure the maintenance of genome integrity under stress conditions. In this chapter, we provide a methodology to study this role of Sirtuins at two different levels: detection of genomic instability (with the Neutral Comet Assay) and study of Sirtuin dynamics in chromatin under stress conditions (by isolating insoluble chromatin fractions).


Asunto(s)
Cromatina/genética , Ensayo Cometa/métodos , Daño del ADN/genética , Inestabilidad Genómica , Sirtuinas/fisiología , Animales , Western Blotting , Células Cultivadas , Daño del ADN/efectos de la radiación , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Ratones , Ratones Noqueados
16.
Genes Cancer ; 4(3-4): 148-63, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24020006

RESUMEN

The members of the Sir2 family, or sirtuins, are major regulators of the response to different types of stress. The members of the family have adapted to increasing complexities throughout evolution and have become diversified by increasing their number, specificity, and localization and acquiring novel functions. Sirtuins have been consistently implicated in the cross-talk between the genomic information and environment from the prokaryotes onward. Evidence suggests that in the transition to eukaryotes, histones became one of the basic and most conserved targets of the family, to the extent that in yeast and mammals, sirtuins were originally described as NAD(+)-dependent histone deacetylases and classified as class III histone deacetylases. A growing number of studies have determined that sirtuins also target a wide range of nonhistone proteins. Many of these targets are also directly or indirectly related to chromatin regulation. The number of targets has grown considerably in the last decade but has provoked an ill-founded discussion that neglects the importance of histones as sirtuin targets. In this review, we summarize our knowledge regarding the range of sirtuin targets described to date and discuss the different functional implications of histone and nonhistone targets throughout evolution.

17.
Cancer Cell ; 21(6): 719-21, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22698398

RESUMEN

Recently reporting in Nature, Barber et al. demonstrated that SIRT7 maintains critical features that define cancer cells by removing the acetylation mark on lysine 18 of histone H3. Interestingly, hypoacetylation of H3K18 has been described as a general marker of tumor prognosis and oncoviral transformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA