Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nat Rev Mol Cell Biol ; 20(12): 766-784, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31558824

RESUMEN

The spatiotemporal control of RNA polymerase II (Pol II)-mediated gene transcription is tightly and intricately regulated. In addition, preservation of the integrity of the DNA template is required so as to ensure unperturbed transcription, particularly since DNA is continually challenged by different types of damaging agents that can form transcription-blocking DNA lesions (TBLs), which impede transcription elongation and cause transcription stress. To overcome the highly cytotoxic effects of TBLs, an intricate cellular response has evolved, in which the transcription-coupled nucleotide excision repair (TC-NER) pathway has a central role in removing TBLs specifically from the transcribed strand. Damage detection by stalling of the transcribing Pol II is highly efficient, but a stalled Pol II complex may create an even bigger problem by interfering with repair of the lesions, and overall with transcription and replication. In this Review, we discuss the effects of different types of DNA damage on Pol II, important concepts of transcription stress, the manner in which TBLs are removed by TC-NER and how different tissues respond to TBLs. We also discuss the role of TBLs in ageing and the complex genotype-phenotype correlations of TC-NER hereditary disorders.


Asunto(s)
Daño del ADN , Reparación del ADN , Replicación del ADN , Enfermedades Genéticas Congénitas , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Humanos , ARN Polimerasa II/genética
2.
Mol Cell ; 82(7): 1343-1358.e8, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35271816

RESUMEN

Nucleotide excision repair (NER) counteracts the onset of cancer and aging by removing helix-distorting DNA lesions via a "cut-and-patch"-type reaction. The regulatory mechanisms that drive NER through its successive damage recognition, verification, incision, and gap restoration reaction steps remain elusive. Here, we show that the RAD5-related translocase HLTF facilitates repair through active eviction of incised damaged DNA together with associated repair proteins. Our data show a dual-incision-dependent recruitment of HLTF to the NER incision complex, which is mediated by HLTF's HIRAN domain that binds 3'-OH single-stranded DNA ends. HLTF's translocase motor subsequently promotes the dissociation of the stably damage-bound incision complex together with the incised oligonucleotide, allowing for an efficient PCNA loading and initiation of repair synthesis. Our findings uncover HLTF as an important NER factor that actively evicts DNA damage, thereby providing additional quality control by coordinating the transition between the excision and DNA synthesis steps to safeguard genome integrity.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN , ADN/genética , ADN/metabolismo , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética
3.
Cell ; 150(6): 1182-95, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22980979

RESUMEN

Ubiquitin-dependent signaling during the DNA damage response (DDR) to double-strand breaks (DSBs) is initiated by two E3 ligases, RNF8 and RNF168, targeting histone H2A and H2AX. RNF8 is the first ligase recruited to the damage site, and RNF168 follows RNF8-dependent ubiquitination. This suggests that RNF8 initiates H2A/H2AX ubiquitination with K63-linked ubiquitin chains and RNF168 extends them. Here, we show that RNF8 is inactive toward nucleosomal H2A, whereas RNF168 catalyzes the monoubiquitination of the histones specifically on K13-15. Structure-based mutagenesis of RNF8 and RNF168 RING domains shows that a charged residue determines whether nucleosomal proteins are recognized. We find that K63 ubiquitin chains are conjugated to RNF168-dependent H2A/H2AX monoubiquitination at K13-15 and not on K118-119. Using a mutant of RNF168 unable to target histones but still catalyzing ubiquitin chains at DSBs, we show that ubiquitin chains per se are insufficient for signaling, but RNF168 target ubiquitination is required for DDR.


Asunto(s)
Histonas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Histonas/química , Humanos , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nucleosomas/química , Nucleosomas/metabolismo , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Ubiquitina-Proteína Ligasas/química , Difracción de Rayos X
4.
Nat Rev Mol Cell Biol ; 15(7): 465-81, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24954209

RESUMEN

Nucleotide excision repair (NER) eliminates various structurally unrelated DNA lesions by a multiwise 'cut and patch'-type reaction. The global genome NER (GG-NER) subpathway prevents mutagenesis by probing the genome for helix-distorting lesions, whereas transcription-coupled NER (TC-NER) removes transcription-blocking lesions to permit unperturbed gene expression, thereby preventing cell death. Consequently, defects in GG-NER result in cancer predisposition, whereas defects in TC-NER cause a variety of diseases ranging from ultraviolet radiation-sensitive syndrome to severe premature ageing conditions such as Cockayne syndrome. Recent studies have uncovered new aspects of DNA-damage detection by NER, how NER is regulated by extensive post-translational modifications, and the dynamic chromatin interactions that control its efficiency. Based on these findings, a mechanistic model is proposed that explains the complex genotype-phenotype correlations of transcription-coupled repair disorders.


Asunto(s)
Envejecimiento/genética , Reparación del ADN/fisiología , Neoplasias/genética , Daño del ADN , Reparación del ADN/genética , Humanos , Modelos Biológicos , Ubiquitina/fisiología
5.
Nucleic Acids Res ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021334

RESUMEN

DNA damage severely impedes gene transcription by RNA polymerase II (Pol II), causing cellular dysfunction. Transcription-Coupled Nucleotide Excision Repair (TC-NER) specifically removes such transcription-blocking damage. TC-NER initiation relies on the CSB, CSA and UVSSA proteins; loss of any results in complete TC-NER deficiency. Strikingly, UVSSA deficiency results in UV-Sensitive Syndrome (UVSS), with mild cutaneous symptoms, while loss of CSA or CSB activity results in the severe Cockayne Syndrome (CS), characterized by neurodegeneration and premature aging. Thus far the underlying mechanism for these contrasting phenotypes remains unclear. Live-cell imaging approaches reveal that in TC-NER proficient cells, lesion-stalled Pol II is swiftly resolved, while in CSA and CSB knockout (KO) cells, elongating Pol II remains damage-bound, likely obstructing other DNA transacting processes and shielding the damage from alternative repair pathways. In contrast, in UVSSA KO cells, Pol II is cleared from the damage via VCP-mediated proteasomal degradation which is fully dependent on the CRL4CSA ubiquitin ligase activity. This Pol II degradation might provide access for alternative repair mechanisms, such as GG-NER, to remove the damage. Collectively, our data indicate that the inability to clear lesion-stalled Pol II from the chromatin, rather than TC-NER deficiency, causes the severe phenotypes observed in CS.

6.
Nucleic Acids Res ; 51(11): 5396-5413, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-36971114

RESUMEN

The deubiquitinating enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.


Asunto(s)
Ataxina-3 , Cromatina , Replicación del ADN , Humanos , Ataxina-3/genética , Ataxina-3/metabolismo , Cromatina/genética , Daño del ADN , Enfermedad de Machado-Joseph/genética , Proteínas Represoras/metabolismo
7.
Mol Cell ; 59(6): 885-6, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26384662

RESUMEN

In this issue, Li et al. (2015) uncover roles for the XPB and XPD helicases and for XPA during damage verification in nucleotide excision repair, supporting a novel tripartite damage checking mechanism that combines extreme versatility with narrow specificity.


Asunto(s)
Aductos de ADN/genética , Proteínas de Unión al ADN/fisiología , Factor de Transcripción TFIIH/fisiología , Proteína de la Xerodermia Pigmentosa del Grupo A/fisiología , Animales , Humanos
8.
J Cell Sci ; 133(9)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32184266

RESUMEN

Many chromatin remodeling and modifying proteins are involved in the DNA damage response, where they stimulate repair or induce DNA damage signaling. Interestingly, we identified that downregulation of the histone H1 (H1)-interacting protein SET results in increased resistance to a wide variety of DNA damaging agents. We found that this increased resistance does not result from alleviation of an inhibitory effect of SET on DNA repair but, rather, is the consequence of a suppressed apoptotic response to DNA damage. Furthermore, we provide evidence that the histone chaperone SET is responsible for the eviction of H1 from chromatin. Knockdown of H1 in SET-depleted cells resulted in re-sensitization of cells to DNA damage, suggesting that the increased DNA damage resistance in SET-depleted cells is the result of enhanced retention of H1 on chromatin. Finally, clonogenic survival assays showed that SET and p53 act epistatically in the attenuation of DNA damage-induced cell death. Taken together, our data indicate a role for SET in the DNA damage response as a regulator of cell survival following genotoxic stress.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Chaperonas de Histonas , Histonas , Supervivencia Celular/genética , Cromatina/genética , Daño del ADN/genética , Chaperonas de Histonas/genética , Histonas/genética
9.
Nature ; 523(7558): 53-8, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26106861

RESUMEN

In response to DNA damage, tissue homoeostasis is ensured by protein networks promoting DNA repair, cell cycle arrest or apoptosis. DNA damage response signalling pathways coordinate these processes, partly by propagating gene-expression-modulating signals. DNA damage influences not only the abundance of messenger RNAs, but also their coding information through alternative splicing. Here we show that transcription-blocking DNA lesions promote chromatin displacement of late-stage spliceosomes and initiate a positive feedback loop centred on the signalling kinase ATM. We propose that initial spliceosome displacement and subsequent R-loop formation is triggered by pausing of RNA polymerase at DNA lesions. In turn, R-loops activate ATM, which signals to impede spliceosome organization further and augment ultraviolet-irradiation-triggered alternative splicing at the genome-wide level. Our findings define R-loop-dependent ATM activation by transcription-blocking lesions as an important event in the DNA damage response of non-replicating cells, and highlight a key role for spliceosome displacement in this process.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN/fisiología , Transducción de Señal , Empalmosomas/metabolismo , Empalme Alternativo/fisiología , Línea Celular , Cromatina/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Activación Enzimática , Humanos , Rayos Ultravioleta
10.
Mol Cell ; 51(4): 469-79, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23973375

RESUMEN

Chromatin remodeling is tightly linked to all DNA-transacting activities. To study chromatin remodeling during DNA repair, we established quantitative fluorescence imaging methods to measure the exchange of histones in chromatin in living cells. We show that particularly H2A and H2B are evicted and replaced at an accelerated pace at sites of UV-induced DNA damage. This accelerated exchange of H2A/H2B is facilitated by SPT16, one of the two subunits of the histone chaperone FACT (facilitates chromatin transcription) but largely independent of its partner SSRP1. Interestingly, SPT16 is targeted to sites of UV light-induced DNA damage-arrested transcription and is required for efficient restart of RNA synthesis upon damage removal. Together, our data uncover an important role for chromatin dynamics at the crossroads of transcription and the UV-induced DNA damage response.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo , Rayos Ultravioleta , Western Blotting , Proteínas de Ciclo Celular , Inmunoprecipitación de Cromatina , Reactivos de Enlaces Cruzados/farmacología , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Células HeLa , Proteínas del Grupo de Alta Movilidad/genética , Histonas/genética , Humanos , Nucleosomas/genética , ARN/genética , ARN/metabolismo , Factores de Transcripción , Factores de Elongación Transcripcional/genética
11.
Nucleic Acids Res ; 47(7): 3536-3549, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30698791

RESUMEN

UV light induces cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PPs), which can result in carcinogenesis and aging, if not properly repaired by nucleotide excision repair (NER). Assays to determine DNA damage load and repair rates are invaluable tools for fundamental and clinical NER research. However, most current assays to quantify DNA damage and repair cannot be performed in real time. To overcome this limitation, we made use of the damage recognition characteristics of CPD and 6-4PP photolyases (PLs). Fluorescently-tagged PLs efficiently recognize UV-induced DNA damage without blocking NER activity, and therefore can be used as sensitive live-cell damage sensors. Importantly, FRAP-based assays showed that PLs bind to damaged DNA in a highly sensitive and dose-dependent manner, and can be used to quantify DNA damage load and to determine repair kinetics in real time. Additionally, PLs can instantly reverse DNA damage by 405 nm laser-assisted photo-reactivation during live-cell imaging, opening new possibilities to study lesion-specific NER dynamics and cellular responses to damage removal. Our results show that fluorescently-tagged PLs can be used as a versatile tool to sense, quantify and repair DNA damage, and to study NER kinetics and UV-induced DNA damage response in living cells.


Asunto(s)
Daño del ADN/genética , ADN/genética , Dímeros de Pirimidina/genética , Carcinogénesis/genética , Carcinogénesis/efectos de la radiación , ADN/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/efectos de la radiación , Humanos , Dímeros de Pirimidina/efectos de la radiación , Rayos Ultravioleta/efectos adversos
12.
Nucleic Acids Res ; 47(8): 4011-4025, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30715484

RESUMEN

Transcription-coupled nucleotide excision repair (TC-NER) is a dedicated DNA repair pathway that removes transcription-blocking DNA lesions (TBLs). TC-NER is initiated by the recognition of lesion-stalled RNA Polymerase II by the joint action of the TC-NER factors Cockayne Syndrome protein A (CSA), Cockayne Syndrome protein B (CSB) and UV-Stimulated Scaffold Protein A (UVSSA). However, the exact recruitment mechanism of these factors toward TBLs remains elusive. Here, we study the recruitment mechanism of UVSSA using live-cell imaging and show that UVSSA accumulates at TBLs independent of CSA and CSB. Furthermore, using UVSSA deletion mutants, we could separate the CSA interaction function of UVSSA from its DNA damage recruitment activity, which is mediated by the UVSSA VHS and DUF2043 domains, respectively. Quantitative interaction proteomics showed that the Spt16 subunit of the histone chaperone FACT interacts with UVSSA, which is mediated by the DUF2043 domain. Spt16 is recruited to TBLs, independently of UVSSA, to stimulate UVSSA recruitment and TC-NER-mediated repair. Spt16 specifically affects UVSSA, as Spt16 depletion did not affect CSB recruitment, highlighting that different chromatin-modulating factors regulate different reaction steps of the highly orchestrated TC-NER pathway.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Reparación del ADN , Proteínas de Unión al ADN/genética , ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , ARN Polimerasa II/genética , Factores de Transcripción/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Transformada , Línea Celular Tumoral , Cromatina/metabolismo , Cromatina/ultraestructura , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Imagen Óptica , Osteoblastos/metabolismo , Osteoblastos/ultraestructura , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo
13.
Nucleic Acids Res ; 47(17): e100, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31318974

RESUMEN

The majority of the proteins involved in processing of DNA double-strand breaks (DSBs) accumulate at the damage sites. Real-time imaging and analysis of these processes, triggered by the so-called microirradiation using UV lasers or heavy particle beams, yielded valuable insights into the underlying DSB repair mechanisms. To study the temporal organization of DSB repair responses triggered by a more clinically-relevant DNA damaging agent, we developed a system coined X-ray multi-microbeam microscope (XM3), capable of simultaneous high dose-rate (micro)irradiation of large numbers of cells with ultra-soft X-rays and imaging of the ensuing cellular responses. Using this setup, we analyzed the changes in real-time kinetics of MRE11, MDC1, RNF8, RNF168 and 53BP1-proteins involved in the signaling axis of mammalian DSB repair-in response to X-ray and UV laser-induced DNA damage, in non-cancerous and cancer cells and in the presence or absence of a photosensitizer. Our results reveal, for the first time, the kinetics of DSB signaling triggered by X-ray microirradiation and establish XM3 as a powerful platform for real-time analysis of cellular DSB repair responses.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Imagen de Lapso de Tiempo/métodos , Rayos X , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Humanos , Proteína Homóloga de MRE11 , Microscopía Electrónica de Rastreo , Osteosarcoma/metabolismo , Epitelio Pigmentado Ocular/metabolismo , Transducción de Señal , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Rayos Ultravioleta
14.
Proc Natl Acad Sci U S A ; 115(19): E4368-E4376, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29632207

RESUMEN

Initiation and promoter-proximal pausing are key regulatory steps of RNA Polymerase II (Pol II) transcription. To study the in vivo dynamics of endogenous Pol II during these steps, we generated fully functional GFP-RPB1 knockin cells. GFP-RPB1 photobleaching combined with computational modeling revealed four kinetically distinct Pol II fractions and showed that on average 7% of Pol II are freely diffusing, while 10% are chromatin-bound for 2.4 seconds during initiation, and 23% are promoter-paused for only 42 seconds. This unexpectedly high turnover of Pol II at promoters is most likely caused by premature termination of initiating and promoter-paused Pol II and is in sharp contrast to the 23 minutes that elongating Pol II resides on chromatin. Our live-cell-imaging approach provides insights into Pol II dynamics and suggests that the continuous release and reinitiation of promoter-bound Pol II is an important component of transcriptional regulation.


Asunto(s)
Regiones Promotoras Genéticas/fisiología , ARN Polimerasa II/metabolismo , Transcripción Genética/fisiología , Línea Celular Transformada , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , ARN Polimerasa II/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
15.
EMBO Rep ; 19(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30104204

RESUMEN

Histone acetylation influences protein interactions and chromatin accessibility and plays an important role in the regulation of transcription, replication, and DNA repair. Conversely, DNA damage affects these crucial cellular processes and induces changes in histone acetylation. However, a comprehensive overview of the effects of DNA damage on the histone acetylation landscape is currently lacking. To quantify changes in histone acetylation, we developed an unbiased quantitative mass spectrometry analysis on affinity-purified acetylated histone peptides, generated by differential parallel proteolysis. We identify a large number of histone acetylation sites and observe an overall reduction of acetylated histone residues in response to DNA damage, indicative of a histone-wide loss of acetyl modifications. This decrease is mainly caused by DNA damage-induced replication stress coupled to specific proteasome-dependent loss of acetylated histones. Strikingly, this degradation of acetylated histones is independent of ubiquitylation but requires the PA200-proteasome activator, a complex that specifically targets acetylated histones for degradation. The uncovered replication stress-induced degradation of acetylated histones represents an important chromatin-modifying response to cope with replication stress.


Asunto(s)
Cromatina/genética , Daño del ADN/genética , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/genética , Acetilación , Secuencia de Aminoácidos/genética , Reparación del ADN/genética , Replicación del ADN/genética , Histonas/genética , Humanos , Proteolisis , Ubiquitinación/genética
16.
Nucleic Acids Res ; 46(15): 7747-7756, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29955842

RESUMEN

Transcription-coupled nucleotide excision repair factor Cockayne syndrome protein B (CSB) was suggested to function in the repair of oxidative DNA damage. However thus far, no clear role for CSB in base excision repair (BER), the dedicated pathway to remove abundant oxidative DNA damage, could be established. Using live cell imaging with a laser-assisted procedure to locally induce 8-oxo-7,8-dihydroguanine (8-oxoG) lesions, we previously showed that CSB is recruited to these lesions in a transcription-dependent but NER-independent fashion. Here we showed that recruitment of the preferred 8-oxoG-glycosylase 1 (OGG1) is independent of CSB or active transcription. In contrast, recruitment of the BER-scaffolding protein, X-ray repair cross-complementing protein 1 (XRCC1), to 8-oxoG lesions is stimulated by CSB and transcription. Remarkably, recruitment of XRCC1 to BER-unrelated single strand breaks (SSBs) does not require CSB or transcription. Together, our results suggest a specific transcription-dependent role for CSB in recruiting XRCC1 to BER-generated SSBs, whereas XRCC1 recruitment to SSBs generated independently of BER relies predominantly on PARP activation. Based on our results, we propose a model in which CSB plays a role in facilitating BER progression at transcribed genes, probably to allow XRCC1 recruitment to BER-intermediates masked by RNA polymerase II complexes stalled at these intermediates.


Asunto(s)
Daño del ADN , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , Reparación del ADN , ADN/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Transcripción Genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Línea Celular , ADN/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Células HEK293 , Humanos , Modelos Genéticos , Oxidación-Reducción , Estrés Oxidativo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
17.
Hum Mol Genet ; 26(23): 4689-4698, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973399

RESUMEN

The rare recessive developmental disorder Trichothiodystrophy (TTD) is characterized by brittle hair and nails. Patients also present a variable set of poorly explained additional clinical features, including ichthyosis, impaired intelligence, developmental delay and anemia. About half of TTD patients are photosensitive due to inherited defects in the DNA repair and transcription factor II H (TFIIH). The pathophysiological contributions of unrepaired DNA lesions and impaired transcription have not been dissected yet. Here, we functionally characterize the consequence of a homozygous missense mutation in the general transcription factor II E, subunit 2 (GTF2E2/TFIIEß) of two unrelated non-photosensitive TTD (NPS-TTD) families. We demonstrate that mutant TFIIEß strongly reduces the total amount of the entire TFIIE complex, with a remarkable temperature-sensitive transcription defect, which strikingly correlates with the phenotypic aggravation of key clinical symptoms after episodes of high fever. We performed induced pluripotent stem (iPS) cell reprogramming of patient fibroblasts followed by in vitro erythroid differentiation to translate the intriguing molecular defect to phenotypic expression in relevant tissue, to disclose the molecular basis for some specific TTD features. We observed a clear hematopoietic defect during late-stage differentiation associated with hemoglobin subunit imbalance. These new findings of a DNA repair-independent transcription defect and tissue-specific malfunctioning provide novel mechanistic insight into the etiology of TTD.


Asunto(s)
Factores de Transcripción TFII/genética , Síndromes de Tricotiodistrofia/genética , Diferenciación Celular/genética , Reprogramación Celular/genética , ADN Helicasas/genética , Reparación del ADN , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Mutación , Mutación Missense , Especificidad de Órganos , Linaje , Factores de Transcripción TFII/metabolismo , Transcripción Genética , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patología
18.
Nucleic Acids Res ; 45(9): e68, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28088761

RESUMEN

Nucleotide excision repair (NER) comprises two damage recognition pathways: global genome NER (GG-NER) and transcription-coupled NER (TC-NER), which remove a wide variety of helix-distorting lesions including UV-induced damage. During NER, a short stretch of single-stranded DNA containing damage is excised and the resulting gap is filled by DNA synthesis in a process called unscheduled DNA synthesis (UDS). UDS is measured by quantifying the incorporation of nucleotide analogues into repair patches to provide a measure of NER activity. However, this assay is unable to quantitatively determine TC-NER activity due to the low contribution of TC-NER to the overall NER activity. Therefore, we developed a user-friendly, fluorescence-based single-cell assay to measure TC-NER activity. We combined the UDS assay with tyramide-based signal amplification to greatly increase the UDS signal, thereby allowing UDS to be quantified at low UV doses, as well as DNA-repair synthesis of other excision-based repair mechanisms such as base excision repair and mismatch repair. Importantly, we demonstrated that the amplified UDS is sufficiently sensitive to quantify TC-NER-derived repair synthesis in GG-NER-deficient cells. This assay is important as a diagnostic tool for NER-related disorders and as a research tool for obtaining new insights into the mechanism and regulation of excision repair.


Asunto(s)
Reparación del ADN , Técnicas Genéticas , Transcripción Genética , Línea Celular , Daño del ADN , Replicación del ADN , Fluorescencia , Humanos , Tiramina/química
19.
RNA Biol ; 13(3): 272-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26913497

RESUMEN

In response to DNA damage cells activate intricate protein networks to ensure genomic fidelity and tissue homeostasis. DNA damage response signaling pathways coordinate these networks and determine cellular fates, in part, by modulating RNA metabolism. Here we discuss a replication-independent pathway activated by transcription-blocking DNA lesions, which utilizes the ATM signaling kinase to regulate spliceosome function in a reciprocal manner. We present a model according to which, displacement of co-transcriptional spliceosomes from lesion-arrested RNA polymerases, culminates in R-loop formation and non-canonical ATM activation. ATM signals in a feed-forward fashion to further impede spliceosome organization and regulates UV-induced gene expression and alternative splicing genome-wide. This reciprocal coupling between ATM and the spliceosome highlights the importance of ATM signaling in the cellular response to transcription-blocking lesions and supports a key role of the splicing machinery in this process.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN , Empalmosomas/genética , Replicación del ADN , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética
20.
Nucleic Acids Res ; 42(13): 8473-85, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24990377

RESUMEN

Chromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of the CSB protein to lesion-stalled RNA polymerase II. Using live cell imaging, we identify a novel function for two distinct mammalian ISWI adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in resolving lesion-stalled transcription. Human ISWI isoform SMARCA5/SNF2H and its binding partners ACF1 and WSTF are rapidly recruited to UV-C induced DNA damage to specifically facilitate CSB binding and to promote transcription recovery. SMARCA5 targeting to UV-C damage depends on transcription and histone modifications and requires functional SWI2/SNF2-ATPase and SLIDE domains. After initial recruitment to UV damage, SMARCA5 re-localizes away from the center of DNA damage, requiring its HAND domain. Our studies support a model in which SMARCA5 targeting to DNA damage-stalled transcription sites is controlled by an ATP-hydrolysis-dependent scanning and proofreading mechanism, highlighting how SWI2/SNF2 chromatin remodelers identify and bind nucleosomes containing damaged DNA.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN , Transcripción Genética , Adenosina Trifosfatasas/análisis , Adenosina Trifosfatasas/química , Línea Celular , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/química , Daño del ADN , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Histonas/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Estructura Terciaria de Proteína , Factores de Transcripción/metabolismo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA