Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875583

RESUMEN

Understanding the motility behavior of bacteria in confining microenvironments, in which they search for available physical space and move in response to stimuli, is important for environmental, food industry, and biomedical applications. We studied the motility of five bacterial species with various sizes and flagellar architectures (Vibrio natriegens, Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in microfluidic environments presenting various levels of confinement and geometrical complexity, in the absence of external flow and concentration gradients. When the confinement is moderate, such as in quasi-open spaces with only one limiting wall, and in wide channels, the motility behavior of bacteria with complex flagellar architectures approximately follows the hydrodynamics-based predictions developed for simple monotrichous bacteria. Specifically, V. natriegens and V. fischeri moved parallel to the wall and P. putida and E. coli presented a stable movement parallel to the wall but with incidental wall escape events, while M. marinus exhibited frequent flipping between wall accumulator and wall escaper regimes. Conversely, in tighter confining environments, the motility is governed by the steric interactions between bacteria and the surrounding walls. In mesoscale regions, where the impacts of hydrodynamics and steric interactions overlap, these mechanisms can either push bacteria in the same directions in linear channels, leading to smooth bacterial movement, or they could be oppositional (e.g., in mesoscale-sized meandered channels), leading to chaotic movement and subsequent bacterial trapping. The study provides a methodological template for the design of microfluidic devices for single-cell genomic screening, bacterial entrapment for diagnostics, or biocomputation.


Asunto(s)
Fenómenos Fisiológicos Bacterianos/genética , Movimiento/fisiología , Alphaproteobacteria/fisiología , Bacterias/crecimiento & desarrollo , Biopelículas , Escherichia coli/fisiología , Flagelos/fisiología , Hidrodinámica , Microfluídica/métodos , Modelos Biológicos , Pseudomonas putida/fisiología , Vibrio/fisiología
2.
Opt Express ; 31(14): 23008-23026, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475396

RESUMEN

Intravital microscopy in small animals growingly contributes to the visualization of short- and long-term mammalian biological processes. Miniaturized fluorescence microscopy has revolutionized the observation of live animals' neural circuits. The technology's ability to further miniaturize to improve freely moving experimental settings is limited by its standard lens-based layout. Typical miniature microscope designs contain a stack of heavy and bulky optical components adjusted at relatively long distances. Computational lensless microscopy can overcome this limitation by replacing the lenses with a simple thin mask. Among other critical applications, Flat Fluorescence Microscope (FFM) holds promise to allow for real-time brain circuits imaging in freely moving animals, but recent research reports show that the quality needs to be improved, compared with imaging in clear tissue, for instance. Although promising results were reported with mask-based fluorescence microscopes in clear tissues, the impact of light scattering in biological tissue remains a major challenge. The outstanding performance of deep learning (DL) networks in computational flat cameras and imaging through scattering media studies motivates the development of deep learning models for FFMs. Our holistic ray-tracing and Monte Carlo FFM computational model assisted us in evaluating deep scattering medium imaging with DL techniques. We demonstrate that physics-based DL models combined with the classical reconstruction technique of the alternating direction method of multipliers (ADMM) perform a fast and robust image reconstruction, particularly in the scattering medium. The structural similarity indexes of the reconstructed images in scattering media recordings were increased by up to 20% compared with the prevalent iterative models. We also introduce and discuss the challenges of DL approaches for FFMs under physics-informed supervised and unsupervised learning.


Asunto(s)
Aprendizaje Profundo , Cristalino , Lentes , Animales , Microscopía Fluorescente/métodos , Microscopía Intravital , Procesamiento de Imagen Asistido por Computador/métodos , Mamíferos
3.
Magn Reson Med ; 77(1): 444-452, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26898722

RESUMEN

PURPOSE: An injector equipped with a bead capture and a bead detection system is presented. In the context of magnetic resonance navigation (MRN), in which MRI gradients are used to steer intravascular therapeutic carriers, fast and reliable injection is essential. In this paper, we present a prototype of injector to control and to detect the release of magnetic beads. METHODS: The injector relies on two distinct subsystems: (1) the capture subsystem, which creates local magnetic force to stop the flow of magnetic beads; and (2) the detection subsystem, which detects flowing beads and generates a trigger signal to start MRI gradient pulses. Both systems rely on small microcoils wound on the tubing. RESULTS: Five-turn microcoils show the best compromise between size and performance. Less than 5 mW of power is required to capture 0.8-mm beads moving in a flow above 5 mL min-1 or when a gradient above 200 mT m-1 is applied. The detection system is not sensitive to noise and detects every 0.8-mm bead in flow rates up to 14 mL m-1 . CONCLUSION: The prototype of injector shows performance above the requirements inherent to magnetic resonance navigation. This system is a step toward in vivo multibifurcation MRN. Magn Reson Med 77:444-452, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Inyecciones/instrumentación , Imagen por Resonancia Magnética/métodos , Imanes , Modelos Teóricos , Cirugía Asistida por Computador/métodos , Diseño de Equipo , Microesferas
5.
Int J Hyperthermia ; 32(6): 657-65, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27380542

RESUMEN

PURPOSE: The blood-retina barrier (BRB) is a biological barrier consisting of tightly interconnected endothelial cells inside the retinal vascular network that protects the neural tissue from harmful pathogens and neurotoxic molecules circulating in the bloodstream. Unfortunately, with regard to retinoblastoma, this barrier also prevents systemically administered therapeutics reaching the retinal tissue. In this study we introduce a novel technique to locally and transiently increase BRB permeability for drug delivery using hyperthermia of magnetic nanoparticles (MNPs). MATERIALS AND METHODS: An alternating current (AC) magnetic field was used to induce hyperthermia of locally injected MNPs in the left ophthalmic artery of a rat model. To improve adherence on the surface of the endothelium, commercially available MNPs coated with human transferrin glycoproteins were used. After hyperthermia we assessed the extravasation of systemically injected sodium fluorescein (NaF) as well as Evans blue dye (EBD) into the retinal tissue. RESULTS: Spectrofluorometry and fluorescent microscopy image analysis show a significant increase of dye penetration in the retina where hyperthermia of MNPs was applied. CONCLUSIONS: Our proposed new technique can allow both small and large dye molecules to cross the BRB. While the results are preliminary and thorough evaluation of the retinal tissue following hyperthermia is necessary, this technique has the potential to be an effective mean for the treatment of various diseases such as retinoblastoma.


Asunto(s)
Barrera Hematorretinal/metabolismo , Colorantes/administración & dosificación , Azul de Evans/administración & dosificación , Fluoresceína/administración & dosificación , Hipertermia Inducida , Nanopartículas de Magnetita/administración & dosificación , Animales , Campos Magnéticos , Masculino , Ratas
6.
J Microencapsul ; 32(8): 784-93, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26381056

RESUMEN

SN-38 is a highly effective drug against many cancers. The development of an optimal delivery system for SN-38 is extremely challenging due to its low solubility and labile lactone ring. Herein, SN-38 encapsulated in poly(D,L-lactide-co-glycolide) nanoparticles (NPs) is introduced to enhance its solubility, stability and cellular uptake. SN-38-loaded NPs prepared by spontaneous emulsification solvent diffusion (SESD) method had an average diameter of 310 nm, a zeta potential of -9.69 mV and a loading efficiency of 71%. They were able to protect the active lactone ring of SN-38 against inactivation under physiological condition. A colorectal adenocarcinoma cell line (COLO-205) was used to assess the NPs effects on cytotoxicity and cellular uptake. Result showed a significant decreased cell proliferation and cell apoptosis. These results suggest that these SN-38-loaded NPs can be an effective delivery system for the treatment of colon cancer and potentially for other types of cancers.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos Fitogénicos , Camptotecina/análogos & derivados , Neoplasias Colorrectales/tratamiento farmacológico , Ácido Láctico , Nanopartículas/química , Ácido Poliglicólico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Camptotecina/química , Camptotecina/farmacocinética , Camptotecina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Irinotecán , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/farmacología , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacocinética , Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
7.
Sci Robot ; 9(87): eadh8702, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38354257

RESUMEN

Using external actuation sources to navigate untethered drug-eluting microrobots in the bloodstream offers great promise in improving the selectivity of drug delivery, especially in oncology, but the current field forces are difficult to maintain with enough strength inside the human body (>70-centimeter-diameter range) to achieve this operation. Here, we present an algorithm to predict the optimal patient position with respect to gravity during endovascular microrobot navigation. Magnetic resonance navigation, using magnetic field gradients in clinical magnetic resonance imaging (MRI), is combined with the algorithm to improve the targeting efficiency of magnetic microrobots (MMRs). Using a dedicated microparticle injector, a high-precision MRI-compatible balloon inflation system, and a clinical MRI, MMRs were successfully steered into targeted lobes via the hepatic arteries of living pigs. The distribution ratio of the microrobots (roughly 2000 MMRs per pig) in the right liver lobe increased from 47.7 to 86.4% and increased in the left lobe from 52.2 to 84.1%. After passing through multiple vascular bifurcations, the number of MMRs reaching four different target liver lobes had a 1.7- to 2.6-fold increase in the navigation groups compared with the control group. Performing simulations on 19 patients with hepatocellular carcinoma (HCC) demonstrated that the proposed technique can meet the need for hepatic embolization in patients with HCC. Our technology offers selectable direction for actuator-based navigation of microrobots at the human scale.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Robótica , Humanos , Animales , Porcinos , Arteria Hepática/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen
8.
Biomed Microdevices ; 15(6): 1015-24, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23857666

RESUMEN

This paper presents a Magnetotactic Bacteria (MTB) navigation and aggregation technique that allows targeting without prior knowledge of the exact architecture of the vessels network. The MTB's active motility combined with magnetotaxism (their ability to swim following the magnetic field direction) offer new possibilities for the delivery of drugs to tumors. Many tumor microenvironment parameters such as the malformed angiogenesis capillaries, the heterogeneous blood flow, and the high interstitial pressure affect the delivery of blood-borne drugs to the tumor. Microorganisms used as microcarriers might be helpful in bypassing these limitations while helping to uniformly distribute the drug in the targeted area. Since the angiogenesis network of blood vessels that the tumors recruit is highly disorganized and unpredictable, the magnetic control method adopted account for these parameters to achieve targeting. We demonstrate the effectiveness of the proposed method using a microchannel network offering a complex pattern considered as a worst-case navigation situation. Besides targeted drug delivery to tumor sites using bacterial carrier, aggregation of microorganisms is required for micromanipulation and microassembly.


Asunto(s)
Alphaproteobacteria/fisiología , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Campos Magnéticos , Microfluídica/instrumentación , Neoplasias/tratamiento farmacológico
9.
IEEE Trans Biomed Eng ; 70(11): 3126-3136, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37276095

RESUMEN

OBJECTIVE: Cardiac gating, synchronizing medical scans with cardiac activity, is widely used to make quantitative measurements of physiological events and to obtain high-quality scans free of pulsatile artefacts. This can provide important information for disease diagnosis, targeted control of medical microrobots, etc. The current work proposes a low-cost, self-adaptive, MRI-compatible cardiac gating system. METHOD: The system and its processing algorithm, based on the monitoring and analysis of blood pressure waveforms, are proposed. The system is tested in an in vitro experiment and two living pigs using four-dimensional (4D) flow magnetic resonance imaging (MRI) and two-dimensional phase-contrast (2D-PC) sequences. RESULTS: in vitro and in vivo experiments reveal that the proposed system can provide stable cardiac synchronicity, has good MRI compatibility, and can cope with the fringe magnetic field of the MRI scanner, radiofrequency signals during image acquisition, and heart rate changes. High-resolution 4D flow imaging is successfully acquired both in vivo and in vitro. The difference between the 2D and 4D measurements is ≤ 21%. The incidence of false triggers is 0% in all tests, which is unattainable for other known cardiac gating methods. CONCLUSION: The system has good MRI compatibility and can provide a stable and accurate trigger signal based on pressure waveform. It opens the door to applications where the previous gating methods were difficult to implement or not applicable.

10.
Ann Biomed Eng ; 51(5): 1028-1039, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36580223

RESUMEN

Four-dimensional (4D) flow magnetic resonance imaging (MRI) is a leading-edge imaging technique and has numerous medicinal applications. In vitro 4D flow MRI can offer some advantages over in vivo ones, especially in accurately controlling flow rate (gold standard), removing patient and user-specific variations, and minimizing animal testing. Here, a complete testing method and a respiratory-motion-simulating platform are proposed for in vitro validation of 4D flow MRI. A silicon phantom based on the hepatic arteries of a living pig is made. Under the free-breathing, a human volunteer's liver motion (inferior-superior direction) is tracked using a pencil-beam MRI navigator and is extracted and converted into velocity-distance pairs to program the respiratory-motion-simulating platform. With the magnitude displacement of about 1.3 cm, the difference between the motions obtained from the volunteer and our platform is ≤ 1 mm which is within the positioning error of the MRI navigator. The influence of the platform on the MRI signal-to-noise ratio can be eliminated even if the actuator is placed in the MRI room. The 4D flow measurement errors are respectively 0.4% (stationary phantom), 9.4% (gating window = 3 mm), 27.3% (gating window = 4 mm) and 33.1% (gating window = 7 mm). The vessel resolutions decreased with the increase of the gating window. The low-cost simulation system, assembled from commercially available components, is easy to be duplicated.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Animales , Porcinos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Abdomen , Movimiento (Física) , Hígado , Fantasmas de Imagen
11.
Biomed Microdevices ; 14(6): 1033-45, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22960952

RESUMEN

Microorganisms and specifically motile bacteria have been recently added to the list of micro-actuators typically considered for the implementation of microsystems and microrobots. Such trend has been motivated by the fact these microorganisms are self-powered actuators with overall sizes at the lower end of the micrometer range and which have proven to be extremely effective in low Reynolds number hydrodynamic regime of usually less than 10(-2). Furthermore, the various sensors or taxes in bacteria influencing their movements can also be exploited to perform tasks that were previously considered only for futuristic artificial microrobots. Bacterial implementations and related issues are not only reviewed, but this paper also proposes many techniques and approaches that can be considered as building blocks for the implementations of more sophisticated microsystems and microrobots.


Asunto(s)
Bacterias/metabolismo , Robótica/instrumentación , Biología de Sistemas/métodos , Adhesión Bacteriana , Quimiotaxis , Microfluídica/métodos , Robótica/métodos
12.
IEEE Trans Biomed Eng ; 69(8): 2616-2627, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35167442

RESUMEN

OBJECTIVE: Superparamagnetic nanoparticles (SPIONs) can be combined with tumor chemoembolization agents to form magnetic drug-eluting beads (MDEBs), which are navigated magnetically in the MRI scanner through the vascular system. We aim to develop a method to accurately quantify and localize these particles and to validate the method in phantoms and swine models. METHODS: MDEBs were made of Fe3O4 SPIONs. After injected known numbers of MDEBs, susceptibility artifacts in three-dimensional (3D) volumetric interpolated breath-hold examination (VIBE) sequences were acquired in glass and Polyvinyl alcohol (PVA) phantoms, and two living swine. Image processing of VIBE images provided the volume relationship between MDEBs and their artifact at different VIBE acquisitions and post-processing parameters. Simulated hepatic-artery embolization was performed in vivo with an MRI-conditional magnetic-injection system, using the volume relationship to locate and quantify MDEB distribution. RESULTS: Individual MDEBs were spatially identified, and their artifacts quantified, showing no correlation with magnetic-field orientation or sequence bandwidth, but exhibiting a relationship with echo time and providing a linear volume relationship. Two MDEB aggregates were magnetically steered into desired liver regions while the other 19 had no steering, and 25 aggregates were injected into another swine without steering. The MDEBs were spatially identified and the volume relationship showed accuracy in assessing the number of the MDEBs, with small errors (≤ 8.8%). CONCLUSION AND SIGNIFICANCE: MDEBs were able to be steered into desired body regions and then localized using 3D VIBE sequences. The resulting volume relationship was linear, robust, and allowed for quantitative analysis of the MDEB distribution.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Animales , Artefactos , Medios de Contraste , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Nanopartículas Magnéticas de Óxido de Hierro , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Porcinos
13.
Med Phys ; 38(9): 4994-5002, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21978043

RESUMEN

PURPOSE: The authors quantify the deflections of a catheter and a guidewire in MR setting with different designs of ferromagnetic tips and a system of high gradient coils which can generate gradients, and thus forces, 20 times larger than a conventional scanner. METHODS: Different designs of catheter tips are experimentally tested in an effort to maximize the deflections. One to two ferromagnetic spheres are attached at the distal tip of the catheter (or guidewire) with different spacing between the spheres. The effect of dipole-dipole interaction on the steering of the catheter is studied through experimentation and theoretical modeling. The effect of using many spheres on the artefact generated in fast imaging sequences is also investigated. RESULTS: A catheter and a guidewire are successfully steered by applying magnetic gradients inside a magnetic resonance scanner. More ferromagnetic material allows for larger magnetic forces, however, the use of two ferromagnetic spheres introduces undesired dipole-dipole interactions. Two ferromagnetic spheres generate a single larger artefact as they are close together. CONCLUSIONS: By varying the distance between the two ferromagnetic spheres, a balance can be struck between the need to minimize the size of the tip and the undesirable dipole-dipole interaction.


Asunto(s)
Cateterismo/métodos , Imagen por Resonancia Magnética/métodos , Artefactos , Cateterismo/instrumentación , Diseño de Equipo , Modelos Teóricos
14.
J Mater Sci Mater Med ; 22(2): 237-45, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21222141

RESUMEN

Once placed in a magnetic field, smart magnetic materials (SMM) change their shape, which could be use for the development of smaller minimally invasive surgery devices activated by magnetic field. However, the potential degradation and release of cytotoxic ions by SMM corrosion has to be determined. This paper evaluates the corrosion resistance of two SMM: a single crystal Ni-Mn-Ga alloy and Tb(0.27)Dy(0.73)Fe(1.95) alloy. Ni-Mn-Ga alloy displayed a corrosion potential (E (corr)) of -0.58 V/SCE and a corrosion current density (i (corr)) of 0.43 µA/cm(2). During the corrosion assay, Ni-Mn-Ga sample surface was partially protected; local pits were formed on 20% of the surface and nickel ions were mainly found in the electrolyte. Tb(0.27)Dy(0.73)Fe(1.95) alloy exhibited poor corrosion properties such as E (corr) of -0.87 V/SCE and i (corr) of 5.90 µA/cm(2). During the corrosion test, this alloy was continuously degraded, its surface was impaired by pits and cracks extensively and a high amount of iron ions was measured in the electrolyte. These alloys exhibited low corrosion parameters and a selective degradation in the electrolyte. They could only be used for medical applications if they are coated with high strain biocompatible materials or embedded in composites to prevent direct contact with physiological fluids.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles/química , Terbio/química , Corrosión , Disprosio/química , Electrólitos , Equipos y Suministros , Galio/química , Iones , Hierro/química , Magnetismo , Manganeso/química , Ensayo de Materiales , Miniaturización , Níquel/química
15.
Ann Biomed Eng ; 49(12): 3724-3736, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34622313

RESUMEN

INTRODUCTION: Magnetic resonance navigation (MRN) uses MRI gradients to steer magnetic drug-eluting beads (MDEBs) across vascular bifurcations. We aim to experimentally verify our theoretical forces balance model (gravitational, thrust, friction, buoyant and gradient steering forces) to improve the MRN targeted success rate. METHOD: A single-bifurcation phantom (3 mm inner diameter) made of poly-vinyl alcohol was connected to a cardiac pump at 0.8 mL/s, 60 beats/minutes with a glycerol solution to reproduce the viscosity of blood. MDEB aggregates (25 ± 6 particles, 200 [Formula: see text]) were released into the main branch through a 5F catheter. The phantom was tilted horizontally from - 10° to +25° to evaluate the MRN performance. RESULTS: The gravitational force was equivalent to 71.85 mT/m in a 3T MRI. The gradient duration and amplitude had a power relationship (amplitude=78.717 [Formula: see text]). It was possible, in 15° elevated vascular branches, to steer 87% of injected aggregates if two MRI gradients are simultaneously activated ([Formula: see text] = +26.5 mT/m, [Formula: see text]= +18 mT/m for 57% duty cycle), the flow velocity was minimized to 8 cm/s and a residual pulsatile flow to minimize the force of friction. CONCLUSION: Our experimental model can determine the maximum elevation angle MRN can perform in a single-bifurcation phantom simulating in vivo conditions.


Asunto(s)
Vasos Sanguíneos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Modelos Biológicos , Velocidad del Flujo Sanguíneo , Vasos Sanguíneos/fisiología , Fricción , Gravitación , Microesferas , Fantasmas de Imagen
16.
Magn Reson Med ; 63(5): 1336-45, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20432304

RESUMEN

Upgraded gradient coils can effectively enhance the MRI steering of magnetic microparticles in a branching channel. Applications of this method include MRI targeting of magnetic embolization agents for oncologic therapy. A magnetic suspension of Fe(3)O(4) magnetic particles was injected inside a y-shaped microfluidic channel. Magnetic gradients of 0, 50, 100, 200, and 400 mT/m were applied to the magnetic particles perpendicularly to the flow by a custom-built gradient coil inside a 1.5-T MRI scanner. Measurement of the steering ratio was performed both by video analyses and quantification of the mass of the particles collected at each outlet of the microfluidic channel, using atomic absorption spectroscopy. Magnetic particles steering ratios of 0.99 and 0.75 were reached with 400 mT/m gradient amplitude and measured by video analyses and atomic absorption spectroscopy, respectively. Experimental data shows that the steering ratio increases with higher magnetic gradients. Moreover, theory suggests that larger particles (or aggregates), higher magnetizations, and lower flows can also be used to improve the steering ratio. The technological limitation of the approach is that an MRI gradient amplitude increase to a few hundred milliteslas per meter is needed. A simple analytical method based on magnetophoretic velocity predictions and geometric considerations is proposed for steering ratio calculation.


Asunto(s)
Medios de Contraste/química , Medios de Contraste/efectos de la radiación , Imagen por Resonancia Magnética/instrumentación , Magnetismo/instrumentación , Micromanipulación/instrumentación , Campos Electromagnéticos , Fantasmas de Imagen
17.
Int J Rob Res ; 28(4): 571-582, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19890435

RESUMEN

Although nanorobots may play critical roles for many applications in the human body such as targeting tumoral lesions for therapeutic purposes, miniaturization of the power source with an effective onboard controllable propulsion and steering system have prevented the implementation of such mobile robots. Here, we show that the flagellated nanomotors combined with the nanometer-sized magnetosomes of a single Magnetotactic Bacterium (MTB) can be used as an effective integrated propulsion and steering system for devices such as nanorobots designed for targeting locations only accessible through the smallest capillaries in humans while being visible for tracking and monitoring purposes using modern medical imaging modalities such as Magnetic Resonance Imaging (MRI). Through directional and magnetic field intensities, the displacement speeds, directions, and behaviors of swarms of these bacterial actuators can be controlled from an external computer.

18.
Int J Rob Res ; 28(9): 1169-1182, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19890446

RESUMEN

Medical nanorobotics exploits nanometer-scale components and phenomena with robotics to provide new medical diagnostic and interventional tools. Here, the architecture and main specifications of a novel medical interventional platform based on nanorobotics and nanomedicine, and suited to target regions inaccessible to catheterization are described. The robotic platform uses magnetic resonance imaging (MRI) for feeding back information to a controller responsible for the real-time control and navigation along pre-planned paths in the blood vessels of untethered magnetic carriers, nanorobots, and/or magnetotactic bacteria (MTB) loaded with sensory or therapeutic agents acting like a wireless robotic arm, manipulator, or other extensions necessary to perform specific remote tasks. Unlike known magnetic targeting methods, the present platform allows us to reach locations deep in the human body while enhancing targeting efficacy using real-time navigational or trajectory control. The paper describes several versions of the platform upgraded through additional software and hardware modules allowing enhanced targeting efficacy and operations in very difficult locations such as tumoral lesions only accessible through complex microvasculature networks.

19.
Sci Robot ; 4(36)2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33137734

RESUMEN

Navigating tethered instruments through the vasculatures to reach deeper physiological locations presently inaccessible would extend the applicability of many medical interventions, including but not limited to local diagnostics, imaging, and therapies. Navigation through narrower vessels requires minimizing the diameter of the instrument, resulting in a decrease of its stiffness until steerability becomes unpractical, while pushing the instrument at the insertion site to counteract the friction forces from the vessel walls caused by the bending of the instrument. To reach beyond the limit of using a pushing force alone, we report a method relying on a complementary directional pulling force at the tip created by gradients resulting from the magnetic fringe field emanating outside a clinical magnetic resonance imaging (MRI) scanner. The pulling force resulting from gradients exceeding 2 tesla per meter in a space that supports human-scale interventions allows the use of smaller magnets, such as the deformable spring as described here, at the tip of the instrument. Directional forces are achieved by robotically positioning the patient at predetermined successive locations inside the fringe field, a method that we refer to as fringe field navigation (FFN). We show through in vitro and in vivo experiments that x-ray-guided FFN could navigate microguidewires through complex vasculatures well beyond the limit of manual procedures and existing magnetic platforms. Our approach facilitated miniaturization of the instrument by replacing the torque from a relatively weak magnetic field with a configuration designed to exploit the superconducting magnet-based directional forces available in clinical MRI rooms.

20.
Ann Biomed Eng ; 47(12): 2402-2415, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31290038

RESUMEN

This work combines a particle injection system with our proposed magnetic resonance navigation (MRN) sequence with the intention of validating MRN in a two-bifurcation phantom for endovascular treatment of hepatocellular carcinoma (HCC). A theoretical physical model used to calculate the most appropriate size of the magnetic drug-eluting bead (MDEB, 200 µm) aggregates was proposed. The aggregates were injected into the phantom by a dedicated particle injector while a trigger signal was automatically sent to the MRI to start MRN which consists of interleaved tracking and steering sequences. When the main branch of the phantom was parallel to B0, the aggregate distribution ratio in the (left-left, left-right, right-left and right-right divisions was obtained with results of 8, 68, 24 and 0% respectively at baseline (no MRN) and increased to 84%, 100, 84 and 92% (p < 0.001, p = 0.004, p < 0.001, p < 0.001) after implementing our MRN protocol. When the main branch was perpendicular to B0, the right-left branch, having the smallest baseline distribution rate of 0%, reached 80% (p < 0.001) after applying MRN. Moreover, the success rate of MRN was always more than 92% at the 1st bifurcation in the experiments above.


Asunto(s)
Carcinoma Hepatocelular/terapia , Embolización Terapéutica/instrumentación , Neoplasias Hepáticas/terapia , Imagen por Resonancia Magnética/instrumentación , Modelos Teóricos , Diseño de Equipo , Humanos , Nanopartículas de Magnetita , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA