Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Am Chem Soc ; 143(40): 16383-16387, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34570487

RESUMEN

Complanadine A and lycodine are representative members of the Lycopodium alkaloids with a characteristic pyridine-containing tetracyclic skeleton. Complanadine A has demonstrated promising neurotrophic activity and potential for persistent pain management. Herein we report a pyrrole strategy enabled by one-carbon insertion and polarity inversion for concise total syntheses of complanadine A and lycodine. The use of a pyrrole as the pyridine precursor allowed the rapid construction of their tetracyclic skeleton via a one-pot Staudinger reduction, amine-ketone condensation, and Mannich-type cyclization. The pyrrole group was then converted to the desired pyridine by the Ciamician-Dennstedt rearrangement via a one-carbon insertion process, which also simultaneously introduced a chloride at C3 for the next C-H arylation. Other key steps include a direct anti-Markovnikov hydroazidation, a Mukaiyama-Michael addition, and a Paal-Knorr pyrrole synthesis. Lycodine and complanadine A were prepared in 8 and 11 steps, respectively, from a readily available known compound.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos
2.
Nat Prod Rep ; 36(1): 174-219, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29923586

RESUMEN

Covering: 2000-2018In this review, we highlight recent examples of natural product total syntheses employing transition metal-mediated/catalyzed carbonylative cyclization strategies to build key ring systems. It mainly covers carbonylative cyclizations for the construction of O-heterocycles, N-heterocycles and carbocycles including cyclic ketones and phenols. The reaction types include carbonylation of epoxide to ß-lactones, carbonylative (macro)lactonization/lactamization, the Semmelhack reaction, tandem hydroformylation-cyclization, the Pauson-Khand reaction, carbonylative C-H activation cyclization, the Stille/Suzuki carbonylation, [n + m + 1] carbonylative cycloaddition, the Dötz annulation, and others.


Asunto(s)
Productos Biológicos/metabolismo , Ciclización , Lactonas/química
3.
J Am Chem Soc ; 140(50): 17465-17473, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30461272

RESUMEN

Abiespiroside A (1), beshanzuenone C (2), and beshanzuenone D (3) belong to the Abies sesquiterpenoid family. Beshanzuenones C (2) and D (3) are isolated from the critically endangered Chinese fir tree species Abies beshanzuensis and demonstrated weak inhibiting activity against protein tyrosine phosphatase 1B (PTP1B). We describe herein the first total syntheses of these Abies sesquiterpenoids relying on the sustainable and inexpensive chiral pool molecule (+)-carvone. The syntheses feature a palladium-catalyzed hydrocarbonylative lactonization to install the 6,6-fused bicyclic ring system and a Dreiding-Schmidt reaction to build the oxaspirolactone moiety of these target molecules. Our chemical total syntheses of these Abies sesquiterpenoids have enabled (i) the validation of beshanzuenone C's weak PTP1B inhibiting potency, (ii) identification of new synthetic analogs with promising and selective protein tyrosine phosphatase SHP2 inhibiting potency, and (iii) preparation of azide-tagged probe molecules for target identification via a chemoproteomic approach. The latter has resulted in the identification and evaluation of DNA polymerase epsilon subunit 3 (POLE3) as one of the novel cellular targets of these Abies sesquiterpenoids and their analogs. More importantly, via POLE3 inactivation by probe molecule 29 and knockdown experiment, we further demonstrated that targeting POLE3 with small molecules may be a novel strategy for chemosensitization to DNA damaging drugs such as etoposide in cancer.


Asunto(s)
Abies/química , Inhibidores Enzimáticos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Sesquiterpenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Ciclización , ADN Polimerasa III/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Sinergismo Farmacológico , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Etopósido/farmacología , Humanos , Nucleoproteínas/antagonistas & inhibidores , Sesquiterpenos/síntesis química , Sesquiterpenos/química
4.
J Neurosci Res ; 94(6): 568-78, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26308557

RESUMEN

Alterations in the ratio of excitatory to inhibitory transmission are emerging as a common component of many nervous system disorders, including autism spectrum disorders (ASDs). Tonic γ-aminobutyric acidergic (GABAergic) transmission provided by peri- and extrasynaptic GABA type A (GABAA ) receptors powerfully controls neuronal excitability and plasticity and, therefore, provides a rational therapeutic target for normalizing hyperexcitable networks across a variety of disorders, including ASDs. Our previous studies revealed tonic GABAergic deficits in principal excitatory neurons in the basolateral amygdala (BLA) in the Fmr1(-/y) knockout (KO) mouse model fragile X syndrome. To correct amygdala deficits in tonic GABAergic neurotransmission in Fmr1(-/y) KO mice, we developed a novel positive allosteric modulator of GABAA receptors, SGE-872, based on endogenously active neurosteroids. This study shows that SGE-872 is nearly as potent and twice as efficacious for positively modulating GABAA receptors as its parent molecule, allopregnanolone. Furthermore, at submicromolar concentrations (≤1 µM), SGE-872 is selective for tonic, extrasynaptic α4ß3δ-containing GABAA receptors over typical synaptic α1ß2γ2 receptors. We further find that SGE-872 strikingly rescues the tonic GABAergic transmission deficit in principal excitatory neurons in the Fmr1(-/y) KO BLA, a structure heavily implicated in the neuropathology of ASDs. Therefore, the potent and selective action of SGE-872 on tonic GABAA receptors containing α4 subunits may represent a novel and highly useful therapeutic avenue for ASDs and related disorders involving hyperexcitability of neuronal networks.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Moduladores del GABA/farmacología , Potenciales de la Membrana/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Animales , Animales Recién Nacidos , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , GABAérgicos/farmacología , Compuestos Heterocíclicos con 2 Anillos/química , Compuestos Heterocíclicos con 2 Anillos/farmacología , Técnicas In Vitro , Potenciales de la Membrana/genética , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Pregnanolona/análogos & derivados , Pregnanolona/química , Pregnanolona/farmacología , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transfección , Ácido gamma-Aminobutírico/farmacología
5.
J Neurosci ; 33(17): 7548-58, 2013 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-23616559

RESUMEN

Fragile X syndrome (FXS) is a debilitating neurodevelopmental disorder thought to arise from disrupted synaptic communication in several key brain regions, including the amygdala, a central processing center for information with emotional and social relevance. Recent studies reveal defects in both excitatory and inhibitory neurotransmission in mature amygdala circuits in Fmr1(-/y) mutants, the animal model of FXS. However, whether these defects are the result of altered synaptic development or simply faulty mature circuits remains unknown. Using a combination of electrophysiological and genetic approaches, we show the development of both presynaptic and postsynaptic components of inhibitory neurotransmission in the FXS amygdala is dynamically altered during critical stages of neural circuit formation. Surprisingly, we observe that there is a homeostatic correction of defective inhibition, which, despite transiently restoring inhibitory synaptic efficacy to levels at or beyond those of control, ultimately fails to be maintained. Using inhibitory interneuron-specific conditional knock-out and rescue mice, we further reveal that fragile X mental retardation protein function in amygdala inhibitory microcircuits can be segregated into distinct presynaptic and postsynaptic components. Collectively, these studies reveal a previously unrecognized complexity of disrupted neuronal development in FXS and therefore have direct implications for establishing novel temporal and region-specific targeted therapies to ameliorate core amygdala-based behavioral symptoms.


Asunto(s)
Amígdala del Cerebelo/patología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Homeostasis/genética , Red Nerviosa/fisiología , Inhibición Neural/genética , Animales , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Potenciales Postsinápticos Inhibidores/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos
6.
J Neurophysiol ; 112(4): 890-902, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24848467

RESUMEN

Fragile X syndrome (FXS) is the leading cause of inherited intellectual disability. Comorbidities of FXS such as autism are increasingly linked to imbalances in excitation and inhibition (E/I) as well as dysfunction in GABAergic transmission in a number of brain regions including the amygdala. However, the link between E/I imbalance and GABAergic transmission deficits in the FXS amygdala is poorly understood. Here we reveal that normal tonic GABAA receptor-mediated neurotransmission in principal neurons (PNs) of the basolateral amygdala (BLA) is comprised of both δ- and α5-subunit-containing GABAA receptors. Furthermore, tonic GABAergic capacity is reduced in these neurons in the Fmr1 knockout (KO) mouse model of FXS (1.5-fold total, 3-fold δ-subunit, and 2-fold α5-subunit mediated) as indicated by application of gabazine (50 µM), 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP, 1 µM), and α5ia (1.5 µM) in whole cell patch-clamp recordings. Moreover, α5-containing tonic GABAA receptors appear to preferentially modulate nonsomatic compartments of BLA PNs. Examination of evoked feedforward synaptic transmission in these cells surprisingly revealed no differences in overall synaptic conductance or E/I balance between wild-type (WT) and Fmr1 KO mice. Instead, we observed altered feedforward kinetics in Fmr1 KO PNs that supports a subtle yet significant decrease in E/I balance at the peak of excitatory conductance. Blockade of α5-subunit-containing GABAA receptors replicated this condition in WT PNs. Therefore, our data suggest that tonic GABAA receptor-mediated neurotransmission can modulate synaptic E/I balance and timing established by feedforward inhibition and thus may represent a therapeutic target to enhance amygdala function in FXS.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Potenciales Postsinápticos Excitadores , Síndrome del Cromosoma X Frágil/metabolismo , Potenciales Postsinápticos Inhibidores , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/fisiología , Animales , Retroalimentación Fisiológica , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Isoxazoles/farmacología , Ratones , Ftalazinas/farmacología , Subunidades de Proteína/metabolismo , Piridazinas/farmacología , Sinapsis/fisiología , Triazoles/farmacología
7.
Microbiology (Reading) ; 160(Pt 3): 635-645, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24421404

RESUMEN

The oligotrophic bacterium Caulobacter crescentus has the ability to metabolize various organic molecules, including plant structural carbohydrates, as a carbon source. The nature of ß-glucosidase (BGL)-mediated gluco-oligosaccharide degradation and nutrient transport across the outer membrane in C. crescentus was investigated. All gluco-oligosaccharides tested (up to celloheptose) supported growth in M2 minimal media but not cellulose or CM-cellulose. The periplasmic and outer membrane fractions showed highest BGL activity, but no significant BGL activity was observed in the cytosol or extracellular medium. Cells grown in cellobiose showed expression of specific BGLs and TonB-dependent receptors (TBDRs). Carbonyl cyanide 3-chlorophenylhydrazone lowered the rate of cell growth in cellobiose but not in glucose, indicating potential cellobiose transport into the cell by a proton motive force-dependent process, such as TBDR-dependent transport, and facilitated diffusion of glucose across the outer membrane via specific porins. These results suggest that C. crescentus acquires carbon from cellulose-derived gluco-oligosaccharides found in the environment by extracellular and periplasmic BGL activity and TBDR-mediated transport. This report on extracellular degradation of gluco-oligosaccharides and methods of nutrient acquisition by C. crescentus supports a broader suite of carbohydrate metabolic capabilities suggested by the C. crescentus genome sequence that until now have not been reported.


Asunto(s)
Caulobacter crescentus/metabolismo , Oligosacáridos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Caulobacter crescentus/genética , Caulobacter crescentus/crecimiento & desarrollo , Celobiosa/metabolismo , Espacio Extracelular/metabolismo , Expresión Génica , Transcripción Genética , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo
8.
Neural Plast ; 2012: 275630, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22811939

RESUMEN

Deficits in neuronal plasticity are common hallmarks of many neurodevelopmental disorders. In the case of fragile-X syndrome (FXS), disruption in the function of a single gene, FMR1, results in a variety of neurological consequences directly related to problems with the development, maintenance, and capacity of plastic neuronal networks. In this paper, we discuss current research illustrating the mechanisms underlying plasticity deficits in FXS. These processes include synaptic, cell intrinsic, and homeostatic mechanisms both dependent on and independent of abnormal metabotropic glutamate receptor transmission. We place particular emphasis on how identified deficits may play a role in developmental critical periods to produce neuronal networks with permanently decreased capacity to dynamically respond to changes in activity central to learning, memory, and cognition in patients with FXS. Characterizing early developmental deficits in plasticity is fundamental to develop therapies that not only treat symptoms but also minimize the developmental pathology of the disease.


Asunto(s)
Síndrome del Cromosoma X Frágil/patología , Plasticidad Neuronal/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Homeostasis/fisiología , Humanos , Red Nerviosa/patología , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/fisiología , Receptores de Glutamato/fisiología
9.
J Neurosci ; 30(29): 9929-38, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20660275

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by variable cognitive impairment and behavioral disturbances such as exaggerated fear, anxiety and gaze avoidance. Consistent with this, findings from human brain imaging studies suggest dysfunction of the amygdala. Underlying alterations in amygdala synaptic function in the Fmr1 knock-out (KO) mouse model of FXS, however, remain largely unexplored. Utilizing a combination of approaches, we uncover profound alterations in inhibitory neurotransmission in the amygdala of Fmr1 KO mice. We demonstrate a dramatic reduction in the frequency and amplitude of phasic IPSCs, tonic inhibitory currents, as well as in the number of inhibitory synapses in Fmr1 KO mice. Furthermore, we observe significant alterations in GABA availability, both intracellularly and at the synaptic cleft. Together, these findings identify abnormalities in basal and action potential-dependent inhibitory neurotransmission. Additionally, we reveal a significant neuronal hyperexcitability in principal neurons of the amygdala in Fmr1 KO mice, which is strikingly rescued by pharmacological augmentation of tonic inhibitory tone using the GABA agonist gaboxadol (THIP). Thus, our study reveals relevant inhibitory synaptic abnormalities in the amygdala in the Fmr1 KO brain and supports the notion that pharmacological approaches targeting the GABAergic system may be a viable therapeutic approach toward correcting amygdala-based symptoms in FXS.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/fisiopatología , Agonistas del GABA/farmacología , Isoxazoles/farmacología , Transmisión Sináptica/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Modelos Animales de Enfermedad , Potenciales Evocados , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Glutamato Descarboxilasa/metabolismo , Técnicas In Vitro , Interneuronas/metabolismo , Masculino , Ratones , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ácido gamma-Aminobutírico/metabolismo
10.
Dev Neurosci ; 33(5): 349-64, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21934270

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by intellectual disability, sensory hypersensitivity, and high incidences of autism spectrum disorders and epilepsy. These phenotypes are suggestive of defects in neural circuit development and imbalances in excitatory glutamatergic and inhibitory GABAergic neurotransmission. While alterations in excitatory synapse function and plasticity are well-established in Fmr1 knockout (KO) mouse models of FXS, a number of recent electrophysiological and molecular studies now identify prominent defects in inhibitory GABAergic transmission in behaviorally relevant forebrain regions such as the amygdala, cortex, and hippocampus. In this review, we summarize evidence for GABAergic system dysfunction in FXS patients and Fmr1 KO mouse models alike. We then discuss some of the known developmental roles of GABAergic signaling, as well as the development and refinement of GABAergic synapses as a framework for understanding potential causes of mature circuit dysfunction. Finally, we highlight the GABAergic system as a relevant target for the treatment of FXS.


Asunto(s)
Síndrome del Cromosoma X Frágil/fisiopatología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Amígdala del Cerebelo/fisiopatología , Amígdala del Cerebelo/ultraestructura , Animales , Corteza Cerebral/fisiopatología , Corteza Cerebral/ultraestructura , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/terapia , Hipocampo/fisiopatología , Hipocampo/ultraestructura , Humanos , Plasticidad Neuronal/fisiología
11.
Epilepsia ; 49(2): 248-55, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17941842

RESUMEN

PURPOSE: New treatments are needed for status epilepticus (SE) that is refractory to drugs modulating GABA(A) receptors, and NMDA receptor antagonists are candidate drugs. METHODS: Clinically available NMDA receptor antagonist ketamine was tested for effectiveness in terminating prolonged SE induced by a combination of lithium and pilocarpine. Animals were treated 10 min after first grade 5 behavioral seizure (Racine scoring scale) by intraperitoneal administration of ketamine, diazepam, or saline. Seizure termination was determined by electroencephalogram (EEG) recordings from the hippocampus and the cortex. RESULTS: Animals treated with normal saline or either 20 mg/kg diazepam, or 50 mg/kg ketamine continued in SE for the next 300 min. However, combined treatment with diazepam and ketamine rapidly terminated prolonged cholinergic stimulation-induced SE. Detailed study of dose response relationships demonstrated that diazepam enhanced efficacy and potency of ketamine in terminating SE. DISCUSSION: This study demonstrated synergistic action of diazepam and ketamine in terminating SE. It suggests that a ketamine-diazepam combination might be a clinically useful therapeutic option for the treatment of refractory SE.


Asunto(s)
Diazepam/uso terapéutico , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Ketamina/farmacología , Compuestos de Litio , Agonistas Muscarínicos , Pilocarpina , Estado Epiléptico/inducido químicamente , Estado Epiléptico/prevención & control , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Diazepam/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Electroencefalografía/estadística & datos numéricos , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Ketamina/uso terapéutico , Masculino , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/fisiopatología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA