Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 152(5): 1065-76, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452854

RESUMEN

Medulloblastoma is the most common pediatric malignant brain tumor. Although current therapies improve survival, these regimens are highly toxic and are associated with significant morbidity. Here, we report that placental growth factor (PlGF) is expressed in the majority of medulloblastomas, independent of their subtype. Moreover, high expression of PlGF receptor neuropilin 1 (Nrp1) correlates with poor overall survival in patients. We demonstrate that PlGF and Nrp1 are required for the growth and spread of medulloblastoma: PlGF/Nrp1 blockade results in direct antitumor effects in vivo, resulting in medulloblastoma regression, decreased metastasis, and increased mouse survival. We reveal that PlGF is produced in the cerebellar stroma via tumor-derived Sonic hedgehog (Shh) and show that PlGF acts through Nrp1-and not vascular endothelial growth factor receptor 1-to promote tumor cell survival. This critical tumor-stroma interaction-mediated by Shh, PlGF, and Nrp1 across medulloblastoma subtypes-supports the development of therapies targeting PlGF/Nrp1 pathway.


Asunto(s)
Neoplasias Cerebelosas/patología , Cerebelo/metabolismo , Meduloblastoma/patología , Neuropilina-1/metabolismo , Proteínas Gestacionales/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Neoplasias Cerebelosas/metabolismo , Humanos , Meduloblastoma/metabolismo , Ratones , Ratones Noqueados , Trasplante de Neoplasias , Comunicación Paracrina , Factor de Crecimiento Placentario , Trasplante Heterólogo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
2.
Cancer Sci ; 114(9): 3783-3792, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37337413

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is physically palpated as a hard tumor with an unfavorable prognosis. Assessing physical features and their association with pathological features could help to elucidate the mechanism of physical abnormalities in cancer tissues. A total of 93 patients who underwent radical surgery for pancreatic and bile duct cancers at a single center hospital during a 28-month period were recruited for this study that aimed to estimate the stiffness of PDAC tissues compared to the other neoplasms and assess relationships between tumor stiffness and pathological features. Physical alterations and pathological features of PDAC, with or without preoperative therapy, were analyzed. The immunological tumor microenvironment was evaluated using multiplexed fluorescent immunohistochemistry. The stiffness of PDAC correlated with the ratio of Azan-Mallory staining, α-smooth muscle actin, and collagen I-positive areas of the tumors. Densities of CD8+ T cells and CD204+ macrophages were associated with tumor stiffness in cases without preoperative therapy. Pancreatic ductal adenocarcinoma treated with preoperative therapy was softer than that without, and the association between tumor stiffness and immune cell infiltration was not shown after preoperative therapy. We observed the relationship between tumor stiffness and immunological features in human PDAC for the first time. Immune cell densities in the tumor center were smaller in hard tumors than in soft tumors without preoperative therapies. Preoperative therapy could alter physical and immunological aspects, warranting further study. Understanding of the correlations between physical and immunological aspects could lead to the development of new therapies.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linfocitos T CD8-positivos , Microambiente Tumoral , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Pronóstico , Neoplasias Pancreáticas
3.
Annu Rev Physiol ; 81: 505-534, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30742782

RESUMEN

Abnormal blood and lymphatic vessels create a hostile tumor microenvironment characterized by hypoxia, low pH, and elevated interstitial fluid pressure. These abnormalities fuel tumor progression, immunosuppression, and treatment resistance. In 2001, we proposed a novel hypothesis that the judicious use of antiangiogenesis agents-originally developed to starve tumors-could transiently normalize tumor vessels and improve the outcome of anticancer drugs administered during the window of normalization. In addition to providing preclinical and clinical evidence in support of this hypothesis, we also revealed the underlying molecular mechanisms. In parallel, we demonstrated that desmoplasia could also impair vascular function by compressing vessels, and that normalizing the extracellular matrix could improve vascular function and treatment outcome in both preclinical and clinical settings. Here, we summarize the progress made in understanding and applying the normalization concept to cancer and outline opportunities and challenges ahead to improve patient outcomes using various normalizing strategies.


Asunto(s)
Hipoxia , Neoplasias/fisiopatología , Neovascularización Patológica , Microambiente Tumoral , Animales , Humanos , Neoplasias/terapia
4.
PLoS Comput Biol ; 17(12): e1009629, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914688

RESUMEN

Identifying order of symptom onset of infectious diseases might aid in differentiating symptomatic infections earlier in a population thereby enabling non-pharmaceutical interventions and reducing disease spread. Previously, we developed a mathematical model predicting the order of symptoms based on data from the initial outbreak of SARS-CoV-2 in China using symptom occurrence at diagnosis and found that the order of COVID-19 symptoms differed from that of other infectious diseases including influenza. Whether this order of COVID-19 symptoms holds in the USA under changing conditions is unclear. Here, we use modeling to predict the order of symptoms using data from both the initial outbreaks in China and in the USA. Whereas patients in China were more likely to have fever before cough and then nausea/vomiting before diarrhea, patients in the USA were more likely to have cough before fever and then diarrhea before nausea/vomiting. Given that the D614G SARS-CoV-2 variant that rapidly spread from Europe to predominate in the USA during the first wave of the outbreak was not present in the initial China outbreak, we hypothesized that this mutation might affect symptom order. Supporting this notion, we found that as SARS-CoV-2 in Japan shifted from the original Wuhan reference strain to the D614G variant, symptom order shifted to the USA pattern. Google Trends analyses supported these findings, while weather, age, and comorbidities did not affect our model's predictions of symptom order. These findings indicate that symptom order can change with mutation in viral disease and raise the possibility that D614G variant is more transmissible because infected people are more likely to cough in public before being incapacitated with fever.


Asunto(s)
COVID-19/diagnóstico , COVID-19/virología , Modelos Biológicos , SARS-CoV-2 , COVID-19/epidemiología , China/epidemiología , Biología Computacional , Tos/etiología , Diarrea/etiología , Fiebre/etiología , Humanos , Japón/epidemiología , Mutación , Náusea/etiología , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Factores de Tiempo , Estados Unidos/epidemiología , Vómitos/etiología
5.
Proc Natl Acad Sci U S A ; 116(22): 10674-10680, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31040208

RESUMEN

Cancer-associated fibroblasts (CAFs) can either suppress or support T lymphocyte activity, suggesting that CAFs may be reprogrammable to an immunosupportive state. Angiotensin receptor blockers (ARBs) convert myofibroblast CAFs to a quiescent state, but whether ARBs can reprogram CAFs to promote T lymphocyte activity and enhance immunotherapy is unknown. Moreover, ARB doses are limited by systemic adverse effects such as hypotension due to the importance of angiotensin signaling outside tumors. To enhance the efficacy and specificity of ARBs in cancer with the goal of revealing their effects on antitumor immunity, we developed ARB nanoconjugates that preferentially accumulate and act in tumors. We created a diverse library of hundreds of acid-degradable polymers and chemically linked ARBs to the polymer most sensitive to tumor pH. These tumor microenvironment-activated ARBs (TMA-ARBs) remain intact and inactive in circulation while achieving high concentrations in tumors, wherein they break down to active ARBs. This tumor-preferential activity enhances the CAF-reprogramming effects of ARBs while eliminating blood pressure-lowering effects. Notably, TMA-ARBs alleviate immunosuppression and improve T lymphocyte activity, enabling dramatically improved responses to immune-checkpoint blockers in mice with primary as well as metastatic breast cancer.


Asunto(s)
Antagonistas de Receptores de Angiotensina/uso terapéutico , Inmunoterapia/métodos , Neoplasias , Microambiente Tumoral/efectos de los fármacos , Animales , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Femenino , Concentración de Iones de Hidrógeno , Masculino , Ratones , Neoplasias/fisiopatología , Neoplasias/terapia , Polímeros/química
6.
Proc Natl Acad Sci U S A ; 112(6): 1827-32, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25624495

RESUMEN

Tuberculosis (TB) causes almost 2 million deaths annually, and an increasing number of patients are resistant to existing therapies. Patients who have TB require lengthy chemotherapy, possibly because of poor penetration of antibiotics into granulomas where the bacilli reside. Granulomas are morphologically similar to solid cancerous tumors in that they contain hypoxic microenvironments and can be highly fibrotic. Here, we show that TB-infected rabbits have impaired small molecule distribution into these disease sites due to a functionally abnormal vasculature, with a low-molecular-weight tracer accumulating only in peripheral regions of granulomatous lesions. Granuloma-associated vessels are morphologically and spatially heterogeneous, with poor vessel pericyte coverage in both human and experimental rabbit TB granulomas. Moreover, we found enhanced VEGF expression in both species. In tumors, antiangiogenic, specifically anti-VEGF, treatments can "normalize" their vasculature, reducing hypoxia and creating a window of opportunity for concurrent chemotherapy; thus, we investigated vessel normalization in rabbit TB granulomas. Treatment of TB-infected rabbits with the anti-VEGF antibody bevacizumab significantly decreased the total number of vessels while normalizing those vessels that remained. As a result, hypoxic fractions of these granulomas were reduced and small molecule tracer delivery was increased. These findings demonstrate that bevacizumab treatment promotes vascular normalization, improves small molecule delivery, and decreases hypoxia in TB granulomas, thereby providing a potential avenue to improve delivery and efficacy of current treatment regimens.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Vasos Sanguíneos/efectos de los fármacos , Granuloma del Sistema Respiratorio/tratamiento farmacológico , Granuloma del Sistema Respiratorio/metabolismo , Tuberculosis/patología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Bevacizumab , Vasos Sanguíneos/patología , Colorantes/farmacocinética , Granuloma del Sistema Respiratorio/etiología , Humanos , Pericitos/patología , Tomografía de Emisión de Positrones , Conejos , Tomografía Computarizada por Rayos X , Tuberculosis/complicaciones
7.
Proc Natl Acad Sci U S A ; 112(5): 1350-5, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605916

RESUMEN

Multiplexed, phenotypic, intravital cytometric imaging requires novel fluorophore conjugates that have an appropriate size for long circulation and diffusion and show virtually no nonspecific binding to cells/serum while binding to cells of interest with high specificity. In addition, these conjugates must be stable and maintain a high quantum yield in the in vivo environments. Here, we show that this can be achieved using compact (∼15 nm in hydrodynamic diameter) and biocompatible quantum dot (QD) -Ab conjugates. We developed these conjugates by coupling whole mAbs to QDs coated with norbornene-displaying polyimidazole ligands using tetrazine-norbornene cycloaddition. Our QD immunoconstructs were used for in vivo single-cell labeling in bone marrow. The intravital imaging studies using a chronic calvarial bone window showed that our QD-Ab conjugates diffuse into the entire bone marrow and efficiently label single cells belonging to rare populations of hematopoietic stem and progenitor cells (Sca1(+)c-Kit(+) cells). This in vivo cytometric technique may be useful in a wide range of structural and functional imaging to study the interactions between cells and between a cell and its environment in intact and diseased tissues.


Asunto(s)
Anticuerpos/inmunología , Puntos Cuánticos , Animales , Materiales Biocompatibles , Ratones , Ratones Transgénicos
8.
Proc Natl Acad Sci U S A ; 112(46): 14325-30, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26578779

RESUMEN

Preoperative bevacizumab and chemotherapy may benefit a subset of breast cancer (BC) patients. To explore potential mechanisms of this benefit, we conducted a phase II study of neoadjuvant bevacizumab (single dose) followed by combined bevacizumab and adriamycin/cyclophosphamide/paclitaxel chemotherapy in HER2-negative BC. The regimen was well-tolerated and showed a higher rate of pathologic complete response (pCR) in triple-negative (TN)BC (11/21 patients or 52%, [95% confidence interval (CI): 30,74]) than in hormone receptor-positive (HR)BC [5/78 patients or 6% (95%CI: 2,14)]. Within the HRBCs, basal-like subtype was significantly associated with pCR (P = 0.007; Fisher exact test). We assessed interstitial fluid pressure (IFP) and tissue biopsies before and after bevacizumab monotherapy and circulating plasma biomarkers at baseline and before and after combination therapy. Bevacizumab alone lowered IFP, but to a smaller extent than previously observed in other tumor types. Pathologic response to therapy correlated with sVEGFR1 postbevacizumab alone in TNBC (Spearman correlation 0.610, P = 0.0033) and pretreatment microvascular density (MVD) in all patients (Spearman correlation 0.465, P = 0.0005). Moreover, increased pericyte-covered MVD, a marker of extent of vascular normalization, after bevacizumab monotherapy was associated with improved pathologic response to treatment, especially in patients with a high pretreatment MVD. These data suggest that bevacizumab prunes vessels while normalizing those remaining, and thus is beneficial only when sufficient numbers of vessels are initially present. This study implicates pretreatment MVD as a potential predictive biomarker of response to bevacizumab in BC and suggests that new therapies are needed to normalize vessels without pruning.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Bevacizumab/administración & dosificación , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Adulto , Anciano , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Persona de Mediana Edad , Terapia Neoadyuvante , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología
10.
Annu Rev Biomed Eng ; 16: 321-46, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-25014786

RESUMEN

Tumors generate physical forces during growth and progression. These physical forces are able to compress blood and lymphatic vessels, reducing perfusion rates and creating hypoxia. When exerted directly on cancer cells, they can increase cells' invasive and metastatic potential. Tumor vessels-while nourishing the tumor-are usually leaky and tortuous, which further decreases perfusion. Hypoperfusion and hypoxia contribute to immune evasion, promote malignant progression and metastasis, and reduce the efficacy of a number of therapies, including radiation. In parallel, vessel leakiness together with vessel compression causes a uniformly elevated interstitial fluid pressure that hinders delivery of blood-borne therapeutic agents, lowering the efficacy of chemo- and nanotherapies. In addition, shear stresses exerted by flowing blood and interstitial fluid modulate the behavior of cancer and a variety of host cells. Taming these physical forces can improve therapeutic outcomes in many cancers.


Asunto(s)
Neoplasias/fisiopatología , Neoplasias/terapia , Animales , Progresión de la Enfermedad , Sistemas de Liberación de Medicamentos , Líquido Extracelular , Humanos , Hipoxia , Sistema Inmunológico , Linfa , Microcirculación , Modelos Teóricos , Metástasis de la Neoplasia , Neoplasias/patología , Perfusión , Resistencia al Corte , Estrés Mecánico , Factor A de Crecimiento Endotelial Vascular/química
11.
Proc Natl Acad Sci U S A ; 109(38): 15101-8, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22932871

RESUMEN

The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs.


Asunto(s)
Adenocarcinoma/patología , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Animales , Vasos Sanguíneos/patología , Colágeno/química , Femenino , Fibroblastos/patología , Humanos , Ácido Hialurónico/química , Hipoxia , Inmunoterapia/métodos , Ratones , Ratones SCID , Modelos Teóricos , Trasplante de Neoplasias , Neoplasias/patología , Estrés Mecánico , Células del Estroma/citología
12.
Proc Natl Acad Sci U S A ; 109(43): 17561-6, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045683

RESUMEN

The recent approval of a prostate cancer vaccine has renewed hope for anticancer immunotherapies. However, the immunosuppressive tumor microenvironment may limit the effectiveness of current immunotherapies. Antiangiogenic agents have the potential to modulate the tumor microenvironment and improve immunotherapy, but they often are used at high doses in the clinic to prune tumor vessels and paradoxically may compromise various therapies. Here, we demonstrate that targeting tumor vasculature with lower vascular-normalizing doses, but not high antivascular/antiangiogenic doses, of an anti-VEGF receptor 2 (VEGFR2) antibody results in a more homogeneous distribution of functional tumor vessels. Furthermore, lower doses are superior to the high doses in polarizing tumor-associated macrophages from an immune inhibitory M2-like phenotype toward an immune stimulatory M1-like phenotype and in facilitating CD4(+) and CD8(+) T-cell tumor infiltration. Based on this mechanism, scheduling lower-dose anti-VEGFR2 therapy with T-cell activation induced by a whole cancer cell vaccine therapy enhanced anticancer efficacy in a CD8(+) T-cell-dependent manner in both immune-tolerant and immunogenic murine breast cancer models. These findings indicate that vascular-normalizing lower doses of anti-VEGFR2 antibody can reprogram the tumor microenvironment away from immunosuppression toward potentiation of cancer vaccine therapies. Given that the combinations of high doses of bevacizumab with chemotherapy have not improved overall survival of breast cancer patients, our study suggests a strategy to use antiangiogenic agents in breast cancer more effectively with active immunotherapy and potentially other anticancer therapies.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Neoplasias de la Mama/irrigación sanguínea , Inmunoterapia , Microambiente Tumoral , Animales , Neoplasias de la Mama/inmunología , Femenino , Humanos , Ratones , Receptor 2 de Factores de Crecimiento Endotelial Vascular/inmunología
13.
Clin Cancer Res ; 30(11): 2582-2597, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38578281

RESUMEN

PURPOSE: To explore the cellular cross-talk of tumor-resident mast cells (MC) in controlling the activity of cancer-associated fibroblasts (CAF) to overcome tumor microenvironment (TME) abnormalities, enhancing the efficacy of immune-checkpoint inhibitors in sarcoma. EXPERIMENTAL DESIGN: We used a coculture system followed by further validation in mouse models of fibrosarcoma and osteosarcoma with or without administration of the MC stabilizer and antihistamine ketotifen. To evaluate the contribution of ketotifen in sensitizing tumors to therapy, we performed combination studies with doxorubicin chemotherapy and anti-PD-L1 (B7-H1, clone 10F.9G2) treatment. We investigated the ability of ketotifen to modulate the TME in human sarcomas in the context of a repurposed phase II clinical trial. RESULTS: Inhibition of MC activation with ketotifen successfully suppressed CAF proliferation and stiffness of the extracellular matrix accompanied by an increase in vessel perfusion in fibrosarcoma and osteosarcoma as indicated by ultrasound shear wave elastography imaging. The improved tissue oxygenation increased the efficacy of chemoimmunotherapy, supported by enhanced T-cell infiltration and acquisition of tumor antigen-specific memory. Importantly, the effect of ketotifen in reducing tumor stiffness was further validated in sarcoma patients, highlighting its translational potential. CONCLUSIONS: Our study suggests the targeting of MCs with clinically administered drugs, such as antihistamines, as a promising approach to overcome resistance to immunotherapy in sarcomas.


Asunto(s)
Antígeno B7-H1 , Inhibidores de Puntos de Control Inmunológico , Mastocitos , Microambiente Tumoral , Humanos , Ratones , Animales , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antígeno B7-H1/antagonistas & inhibidores , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Sarcoma/inmunología , Cetotifen/farmacología , Cetotifen/uso terapéutico , Línea Celular Tumoral , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Femenino , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/patología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/inmunología
14.
Acta Biomater ; 167: 121-134, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37321529

RESUMEN

Immunotherapy has revolutionized the treatment of dozens of cancers and became a standard of care for some tumor types. However, the majority of patients do not benefit from current immunotherapeutics and many develop severe toxicities. Therefore, the identification of biomarkers to classify patients as likely responders or non-responders to immunotherapy is a timely task. Here, we test ultrasound imaging markers of tumor stiffness and perfusion. Ultrasound imaging is non-invasive and clinically available and can be used both for stiffness and perfusion evaluation. In this study, we employed syngeneic orthotopic models of two breast cancers, a fibrosarcoma and a melanoma, to demonstrate that ultrasound-derived measures of tumor stiffness and perfusion (i.e., blood volume) correlate with the efficacy of immune checkpoint inhibition (ICI) in terms of changes in primary tumor volume. To modulate tumor stiffness and perfusion and thus, get a range of therapeutic outcomes, we employed the mechanotherapeutic tranilast. Mechanotherapeutics combined with ICI are advancing through clinical trials, but biomarkers of response have not been tested until now. We found the existence of linear correlations between tumor stiffness and perfusion imaging biomarkers as well as strong linear correlations between the stiffness and perfusion markers with ICI efficacy on primary tumor growth rates. Our findings set the basis for ultrasound biomarkers predictive of ICI therapy in combination with mechanotherapeutics. STATEMENT OF SIGNIFICANCE: Hypothesis: Monitoring Tumor Microenvironment (TME) mechanical abnormalities can predict the efficacy of immune checkpoint inhibition and provide biomarkers predictive of response. Tumor stiffening and solid stress elevation are hallmarks of tumor patho-physiology in desmoplastic tumors. They induce hypo-perfusion and hypoxia by compressing tumor vessels, posing major barriers to immunotherapy. Mechanotherapeutics is a new class of drugs that target the TME to reduce stiffness and improve perfusion and oxygenation. In this study, we show that measures of stiffness and perfusion derived from ultrasound shear wave elastography and contrast enhanced ultrasound can provide biomarkers of tumor response.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico , Carga Tumoral , Melanoma/terapia , Biomarcadores , Inmunoterapia/métodos , Perfusión , Microambiente Tumoral
15.
J Control Release ; 353: 956-964, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516902

RESUMEN

Nanocarrier-based chemo-immunotherapy has succeeded in clinical trials and understanding its effect on the tumor microenvironment could facilitate development of strategies to increase efficacy of these regimens further. NC-6300 (epirubicin micelle) demonstrates anti-tumor activity in sarcoma patients, but whether it is combinable with immune checkpoint inhibition is unclear. Here, we tested NC-6300 combined with anti-PD-L1 antibody in mouse models of osteosarcoma and fibrosarcoma. We found that sarcoma responds to NC-6300 in a dose-dependent manner, while anti-PD-L1 efficacy is potentiated even at a dose of NC-6300 less than 10% of the maximum tolerated dose. Furthermore, NC-6300 is more effective than the maximum tolerated dose of doxorubicin in increasing the tumor growth delay induced by anti-PD-L1 antibody. We investigated the mechanism of action of this combination. NC-6300 induces immunogenic cell death and its effect on the efficacy of anti-PD-L1 antibody is dependent on T cells. Also, NC-6300 normalized the tumor microenvironment (i.e., ameliorated pathophysiology towards normal phenotype) as evidenced through increased blood vessel maturity and reduced fibrosis. As a result, the combination with anti-PD-L1 antibody increased the intratumor density and proliferation of T cells. In conclusion, NC-6300 potentiates immune checkpoint inhibition in sarcoma, and normalization of the tumor microenvironment should be investigated when developing nanocarrier-based chemo-immunotherapy regimens.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Ratones , Nanomedicina , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia , Microambiente Tumoral , Línea Celular Tumoral
16.
Biochem J ; 436(2): 363-9, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21410436

RESUMEN

The HIF (hypoxia-inducible factor) plays a central regulatory role in oxygen homoeostasis. HIF proteins are regulated by three Fe(II)- and α-KG (α-ketoglutarate)-dependent prolyl hydroxylase enzymes [PHD (prolyl hydroxylase domain) isoenzymes 1-3 or PHD1, PHD2 and PHD3] and one asparaginyl hydroxylase [FIH (factor inhibiting HIF)]. The prolyl hydroxylases control the abundance of HIF through oxygen-dependent hydroxylation of specific proline residues in HIF proteins, triggering subsequent ubiquitination and proteasomal degradation. FIH inhibits the HIF transcription activation through asparagine hydroxylation. Understanding the precise roles and regulation of these four Fe(II)- and α-KG-dependent hydroxylases is of great importance. In the present paper, we report the biochemical characterization of the first HIF protein substrates that contain the CODDD (C-terminal oxygen-dependent degradation domain), the NODDD (N-terminal oxygen-dependent degradation domain) and the CAD (C-terminal transactivation domain). Using LC-MS/MS (liquid chromatography-tandem MS) detection, we show that all three PHD isoenzymes have a strong preference for hydroxylation of the CODDD proline residue over the NODDD proline residue and the preference is observed for both HIF1α and HIF2α protein substrates. In addition, steady-state kinetic analyses show differential substrate selectivity for HIF and α-KG in reference to the three PHD isoforms and FIH.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Sitios de Unión , Humanos , Hidroxilación , Isoenzimas/química , Isoenzimas/metabolismo , Procolágeno-Prolina Dioxigenasa/química , Procolágeno-Prolina Dioxigenasa/metabolismo , Especificidad por Sustrato
17.
Front Cell Dev Biol ; 10: 908389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712656

RESUMEN

Immunotherapies modulate the function of immune cells to eradicate cancer cells through various mechanisms. These therapies are successful across a spectrum of cancers, but they are curative only in a subset of patients. Indeed, a major obstacle to the success of immunotherapies is the immunosuppressive nature of the tumor microenvironment (TME), comprising the stromal component and immune infiltrate of tumors. Importantly, the TME in most solid cancers is characterized by sparsely perfused blood vessels resulting from so-called pathological angiogenesis. In brief, dysregulated development of new vessels results in leaky tumor blood vessels that inefficiently deliver oxygen and other nutrients. Moreover, the occurrence of dysregulated fibrosis around the lesion, known as pathological desmoplasia, further compresses tumor blood vessels and impairs blood flow. TME normalization is a clinically tested treatment strategy to reverse these tumor blood vessel abnormalities resulting in stimulated antitumor immunity and enhanced immunotherapy efficacy. TME normalization includes vascular normalization to reduce vessel leakiness and reprogramming of cancer-associated fibroblast to decompress vessels. How immunotherapies themselves normalize the TME is poorly understood. In this review, we summarize current concepts and progress in TME normalization. Then, we review observations of immunotherapy-induced TME normalization and discuss the considerations for combining vascular normalizing and immunotherapies. If TME could be more completely normalized, immunotherapies could be more effective in more patients.

18.
Oncol Rep ; 48(1)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35583018

RESUMEN

The pathological prognostic factors in pancreatic cancer patients who have received neoadjuvant therapy (NAT) are still elusive. The aim of the present study was to investigate the prognostic potential of histological tumor necrosis (HTN) in patients who received NAT and to evaluate tumor changes after NAT. HTN was studied in 44 pancreatic cancer patients who received NAT followed by surgery (NAT group) compared with 263 patients who received upfront surgery (UFS group). The prognostic factors in the NAT group were analyzed, and carbonic anhydrase 9 (CA­9) expression was compared between the NAT and USF group to evaluate the hypoxic microenvironment changes during NAT. HTN was found in 15 of 44 patients in the NAT group, and its frequency was lower than that in the UFS group (34 vs. 51%, P=0.04). Cox proportional hazards models identified HTN as an independent risk factor for relapse­free survival in the NAT group [risk ratio (RR), 5.60; 95% confidence interval (CI): 2.27­14.26, P<0.01]. Significant correlations were found between HTN and CA­9 expression both in the NAT and UFS groups (P<0.01 for both). CA­9 expression was significantly upregulated in the NAT group overall, although this upregulation was specifically induced in patients without HTN. In conclusion, HTN was a poor prognostic factor in pancreatic cancer patients receiving NAT followed by surgery, and the present study suggests a close association between HTN and tumor hypoxia. Increased hypoxia after NAT may support the thesis for re­engineering the hypoxia­alleviating tumor microenvironment in NAT regimens for pancreatic cancer.


Asunto(s)
Terapia Neoadyuvante , Neoplasias Pancreáticas , Protocolos de Quimioterapia Combinada Antineoplásica , Humanos , Hipoxia , Necrosis , Terapia Neoadyuvante/efectos adversos , Neoplasias Pancreáticas/patología , Pronóstico , Estudios Retrospectivos , Microambiente Tumoral , Neoplasias Pancreáticas
19.
Clin Cancer Res ; 28(14): 3076-3090, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35584239

RESUMEN

PURPOSE: The abnormal function of tumor blood vessels causes tissue hypoxia, promoting disease progression and treatment resistance. Although tumor microenvironment normalization strategies can alleviate hypoxia globally, how local oxygen levels change is not known because of the inability to longitudinally assess vascular and interstitial oxygen in tumors with sufficient resolution. Understanding the spatial and temporal heterogeneity should help improve the outcome of various normalization strategies. EXPERIMENTAL DESIGN: We developed a multiphoton phosphorescence quenching microscopy system using a low-molecular-weight palladium porphyrin probe to measure perfused vessels, oxygen tension, and their spatial correlations in vivo in mouse skin, bone marrow, and four different tumor models. Further, we measured the temporal and spatial changes in oxygen and vessel perfusion in tumors in response to an anti-VEGFR2 antibody (DC101) and an angiotensin-receptor blocker (losartan). RESULTS: We found that vessel function was highly dependent on tumor type. Although some tumors had vessels with greater oxygen-carrying ability than those of normal skin, most tumors had inefficient vessels. Further, intervessel heterogeneity in tumors is associated with heterogeneous response to DC101 and losartan. Using both vascular and stromal normalizing agents, we show that spatial heterogeneity in oxygen levels persists, even with reductions in mean extravascular hypoxia. CONCLUSIONS: High-resolution spatial and temporal responses of tumor vessels to two agents known to improve vascular perfusion globally reveal spatially heterogeneous changes in vessel structure and function. These dynamic vascular changes should be considered in optimizing the dose and schedule of vascular and stromal normalizing strategies to improve the therapeutic outcome.


Asunto(s)
Microscopía , Neoplasias , Angiotensinas , Animales , Hipoxia , Losartán , Ratones , Neoplasias/terapia , Oxígeno , Receptores de Angiotensina , Microambiente Tumoral
20.
Nat Commun ; 13(1): 7165, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36418896

RESUMEN

Nano-immunotherapy improves breast cancer outcomes but not all patients respond and none are cured. To improve efficacy, research focuses on drugs that reprogram cancer-associated fibroblasts (CAFs) to improve therapeutic delivery and immunostimulation. These drugs, however, have a narrow therapeutic window and cause adverse effects. Developing strategies that increase CAF-reprogramming while limiting adverse effects is urgent. Here, taking advantage of the CAF-reprogramming capabilities of tranilast, we developed tranilast-loaded micelles. Strikingly, a 100-fold reduced dose of tranilast-micelles induces superior reprogramming compared to free drug owing to enhanced intratumoral accumulation and cancer-associated fibroblast uptake. Combination of tranilast-micelles and epirubicin-micelles or Doxil with immunotherapy increases T-cell infiltration, resulting in cures and immunological memory in mice bearing immunotherapy-resistant breast cancer. Furthermore, shear wave elastography (SWE) is able to monitor reduced tumor stiffness caused by tranilast-micelles and predict response to nano-immunotherapy. Micellar encapsulation is a promising strategy for TME-reprogramming and SWE is a potential biomarker of response.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias , Ratones , Animales , Micelas , Microambiente Tumoral , Inmunoterapia , ortoaminobenzoatos/farmacología , ortoaminobenzoatos/uso terapéutico , Factores Inmunológicos , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA