Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurol Neurosurg Psychiatry ; 90(12): 1324-1330, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31611264

RESUMEN

OBJECTIVES: In a prospective phase IV trial of the first-line oral treatment dimethyl fumarate (DMF), we examined dynamics of neurofilament light (NFL) chain in serum, plasma and cerebrospinal fluid (CSF) samples collected over 12 months from relapsing-remitting multiple sclerosis (RRMS) patients. NFL changes were related to disease activity. METHODS: We examined NFL levels by single-molecule array in 88 CSF, 348 plasma and 131 sera from treatment-naïve RRMS patients (n=52), healthy controls (n=23) and a placebo group matched by age, sex and NFL (n=52). Plasma/sera were collected at baseline, and 1, 3, 6 and 12 months after DMF. CSF samples were collected at baseline and 12 months after DMF. RESULTS: NFL concentration in CSF, plasma and serum correlated highly (p<0.0001 for all), but plasma levels were only 76.9% of paired serum concentration. After 12 months of DMF treatment, NFL concentration decreased by 73%, 69% and 55% in the CSF, serum and plasma (p<0.0001, respectively). Significant reduction in blood was observed after 6 and 12 months treatment compared with baseline (p<0.01 and p<0.0001, respectively) and to placebo (p<0.0001). Patients with NFL above the 807.5 pg/mL cut-off in CSF had 5.0-times relative risk of disease activity (p<0.001). CONCLUSIONS: This study provides Class II evidence that first-line DMF reduces NFL in both blood and CSF after 6 months and normalises CSF levels in 73% of patients. High NFL concentration in CSF after a year reflected disease activity. NFL levels were higher in serum than in plasma, which should be considered when NFL is used as a biomarker.


Asunto(s)
Dimetilfumarato/efectos adversos , Dimetilfumarato/uso terapéutico , Esclerosis Múltiple Recurrente-Remitente/sangre , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Adulto , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Femenino , Humanos , Filamentos Intermedios , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Estudios Prospectivos , Resultado del Tratamiento
2.
Brain Behav Immun ; 82: 279-297, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31505254

RESUMEN

BACKGROUND: Although tumor necrosis factor (TNF) inhibitors are used to treat chronic inflammatory diseases, there is little information about how long-term inhibition of TNF affects the homeostatic functions that TNF maintains in the intact CNS. MATERIALS AND METHODS: To assess whether developmental TNF deficiency causes alterations in the naïve CNS, we estimated the number of proliferating cells, microglia, and neurons in the developing neocortex of E13.5, P7 and adult TNF knock out (TNF-/-) mice and wildtype (WT) littermates. We also measured changes in gene and protein expression and monoamine levels in adult WT and TNF-/- mice. To evaluate long-term effects of TNF inhibitors, we treated healthy adult C57BL/6 mice with either saline, the selective soluble TNF inhibitor XPro1595, or the nonselective TNF inhibitor etanercept. We estimated changes in cell number and protein expression after two months of treatment. We assessed the effects of TNF deficiency on cognition by testing adult WT and TNF-/- mice and mice treated with saline, XPro1595, or etanercept with specific behavioral tasks. RESULTS: TNF deficiency decreased the number of proliferating cells and microglia and increased the number of neurons. At the same time, TNF deficiency decreased the expression of WNT signaling-related proteins, specifically Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Frizzled receptor 6 (FZD6). In contrast to XPro1595, long-term inhibition of TNF with etanercept in adult C57BL/6 mice decreased the number of BrdU+ cells in the granule cell layer of the dentate gyrus. Etanercept, but not XPro1595, also impaired spatial learning and memory in the Barnes maze memory test. CONCLUSION: TNF deficiency impacts the organization of neurogenic zones and alters the cell composition in brain. Long-term inhibition of TNF with the nonselective TNF inhibitor etanercept, but not the soluble TNF inhibitor XPro1595, decreases neurogenesis in the adult mouse hippocampus and impairs learning and memory after two months of treatment.


Asunto(s)
Corteza Cerebral/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Factor de Necrosis Tumoral alfa/deficiencia , Animales , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Cognición/efectos de los fármacos , Etanercept/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/citología , Microglía/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Vía de Señalización Wnt
3.
J Neuroinflammation ; 11: 203, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25498129

RESUMEN

BACKGROUND: The innate immune system contributes to the outcome after stroke, where neuroinflammation and post-stroke systemic immune depression are central features. Tumor necrosis factor (TNF), which exists in both a transmembrane (tm) and soluble (sol) form, is known to sustain complex inflammatory responses associated with stroke. We tested the effect of systemically blocking only solTNF versus blocking both tmTNF and solTNF on infarct volume, functional outcome and inflammation in focal cerebral ischemia. METHODS: We used XPro1595 (a dominant-negative inhibitor of solTNF) and etanercept (which blocks both solTNF and tmTNF) to test the effect of systemic administration on infarct volume, functional recovery and inflammation after focal cerebral ischemia in mice. Functional recovery was evaluated after one, three and five days, and infarct volumes at six hours, 24 hours and five days after ischemia. Brain inflammation, liver acute phase response (APR), spleen and blood leukocyte profiles, along with plasma microvesicle analysis, were evaluated. RESULTS: We found that both XPro1595 and etanercept significantly improved functional outcomes, altered microglial responses, and modified APR, spleen T cell and microvesicle numbers, but without affecting infarct volumes. CONCLUSIONS: Our data suggest that XPro1595 and etanercept improve functional outcome after focal cerebral ischemia by altering the peripheral immune response, changing blood and spleen cell populations and decreasing granulocyte infiltration into the brain. Blocking solTNF, using XPro1595, was just as efficient as blocking both solTNF and tmTNF using etanercept. Our findings may have implications for future treatments with anti-TNF drugs in TNF-dependent diseases.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Recuperación de la Función/efectos de los fármacos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/administración & dosificación
4.
Exp Neurol ; 295: 144-154, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28602832

RESUMEN

BACKGROUND: Oxidative stress and inflammation exacerbate tissue damage in the brain after ischemic stroke. Dimethyl-fumarate (DMF) and its metabolite monomethyl-fumarate (MMF) are known to stimulate anti-oxidant pathways and modulate inflammatory responses. Considering these dual effects of fumarates, we examined the effect of MMF treatment after ischemic stroke in mice. METHODS: Permanent middle cerebral artery occlusion (pMCAO) was performed using adult, male C57BL/6 mice. Thirty minutes after pMCAO, 20mg/kg MMF was administered intravenously. Outcomes were evaluated 6, 24 and 48h after pMCAO. First, we examined whether a bolus of MMF was capable of changing expression of kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor (Nrf)2 in the infarcted brain. Next, we studied the effect of MMF on functional recovery. To explore mechanisms potentially influencing functional changes, we examined infarct volumes, edema formation, the expression of heat shock protein (Hsp)72, hydroxycarboxylic acid receptor 2 (Hcar2), and inducible nitric oxide synthase (iNOS) in the infarcted brain using real-time PCR and Western blotting. Concentrations of a panel of pro- and anti-inflammatory cytokines (IFNγ, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, TNF) were examined in both the infarcted brain tissue and plasma samples 6, 24 and 48h after pMCAO using multiplex electrochemoluminiscence analysis. RESULTS: Administration of MMF increased the protein level of Nrf2 6h after pMCAO, and improved functional outcome at 24 and 48h after pMCAO. MMF treatment did not influence infarct size, however reduced edema volume at both 24 and 48h after pMCAO. MMF treatment resulted in increased Hsp72 expression in the brain 6h after pMCAO. Hcar2 mRNA levels increased significantly 24h after pMCAO, but were not different between saline- and MMF-treated mice. MMF treatment also increased the level of the anti-inflammatory cytokine IL-10 in the brain and plasma 6h after pMCAO, and additionally reduced the level of the pro-inflammatory cytokine IL-12p70 in the brain at 24 and 48h after pMCAO. CONCLUSIONS: A single intravenous bolus of MMF improved sensory-motor function after ischemic stroke, reduced edema formation, and increased the levels of the neuroprotective protein Hsp72 in the brain. The early increase in IL-10 and reduction in IL-12p70 in the brain combined with changes in systemic cytokine levels may also contribute to the functional recovery after pMCAO.


Asunto(s)
Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Dimetilfumarato/uso terapéutico , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Conducta Animal/efectos de los fármacos , Edema Encefálico/psicología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Citocinas/biosíntesis , Proteínas de Choque Térmico/biosíntesis , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Proteína 1 Asociada A ECH Tipo Kelch/biosíntesis , Proteína 1 Asociada A ECH Tipo Kelch/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/biosíntesis , Factor 2 Relacionado con NF-E2/genética , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Accidente Cerebrovascular/psicología , Resultado del Tratamiento
5.
Front Cell Neurosci ; 10: 14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26869884

RESUMEN

The BH3 interacting-domain death agonist (BID) is a pro-apoptotic protein involved in death receptor-induced and mitochondria-mediated apoptosis. Recently, it has also been suggested that BID is involved in the regulation of inflammatory responses in the central nervous system. We found that BID deficiency protected organotypic hippocampal slice cultures in vitro from neuronal injury induced by oxygen-glucose deprivation. In vivo, BID-knockout (KO) mice and wild type (WT) mice were subjected to 60 min of transient middle cerebral artery occlusion (tMCAO) to induce focal cerebral ischemia, and allowed to recover for 24 h. Infarct volumes and functional outcome were assessed and the inflammatory response was evaluated using immunofluorescence, Western blotting, quantitative PCR (qPCR) and Mesoscale multiplex analysis. We observed no difference in the infarct volume or neurological outcome between BID-KO and WT mice. The inflammatory response was reduced by BID deficiency as indicated by a change in microglial/leukocyte response. In conclusion, our data suggest that BID deficiency is neuroprotective in an in vitro model and modulates the inflammatory response to focal cerebral ischemia in vivo. However, this is not translated into a robust neuroprotection in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA