Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochimie ; 88(6): 737-46, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16808994

RESUMEN

Stable expression of G protein coupled receptors in cell lines is a crucial tool for the characterization of the molecular pharmacology of receptors and the screening for new antagonists. However, in some instances, many difficulties have been encountered to obtain stable cell lines expressing functional receptors. Here, we addressed the question of vector optimization to establish cell lines expressing the human neuropeptide Y receptor 5 (NPY5-R) or histamine receptor 4 (HH4R). We have compared bicistronic vectors containing viral or cellular internal ribosome entry sites (IRES), co-expressing the receptor and the neomycine resistance gene from a single mRNA, to a bigenic vector containing two distinct promoters upstream each different genes. This study is the first one to validate the use of three cellular IRESs for long-term transgene expression. Our results demonstrate for both NPY5-R and HH4R that the bicistronic vectors with EMCV, VEGF, FGF1A or FGF2 IRES provide clones expressing functional receptors with yields between 25% and 100%. In contrast, the bigenic vector provided no functional clones, related to a low expression of NPY5R mRNA. The cell lines expressing active receptor were stable after more than 50 passages. These data indicate that IRES-based bicistronic vectors are particularly appropriate to establish cell clones expressing active G-coupled protein receptors with a high yield. In the case of NPY5, it was a new way to produce such a stable cell line. Furthermore, the characteristics-presented herein-of this receptor pharmacological property are perfectly in line with those reported in the literature.


Asunto(s)
Genes/genética , Vectores Genéticos/genética , Receptores Acoplados a Proteínas G/biosíntesis , Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos/biosíntesis , Receptores Histamínicos/genética , Receptores de Neuropéptido Y/biosíntesis , Receptores de Neuropéptido Y/genética , Expresión Génica , Receptores Histamínicos H4 , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
2.
Oncogenesis ; 5: e209, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26974204

RESUMEN

The sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway has been reported to modulate the expression of the canonical transcription factor hypoxia-inducible HIF-1α in multiple cell lineages. HIF-2α is also frequently overexpressed in solid tumors but its role has been mostly studied in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, where HIF-2α has been established as a driver of a more aggressive disease. In this study, the role of SphK1/S1P signaling with regard to HIF-2α was investigated in various cancer cell models including ccRCC cells. Under hypoxic conditions or in ccRCC lacking a functional von Hippel-Lindau (VHL) gene and expressing high levels of HIF-2α, SphK1 activity controls HIF-2α expression and transcriptional activity through a phospholipase D (PLD)-driven mechanism. SphK1 silencing promotes a VHL-independent HIF-2α loss of expression and activity and reduces cell proliferation in ccRCC. Importantly, downregulation of SphK1 is associated with impaired Akt and mTOR signaling in ccRCC. Taking advantage of a monoclonal antibody neutralizing extracellular S1P, we show that inhibition of S1P extracellular signaling blocks HIF-2α accumulation in ccRCC cell lines, an effect mimicked when the S1P transporter Spns2 or the S1P receptor 1 (S1P1) is silenced. Here, we report the first evidence that the SphK1/S1P signaling pathway regulates the transcription factor hypoxia-inducible HIF-2α in diverse cancer cell lineages notably ccRCC, where HIF-2α has been established as a driver of a more aggressive disease. These findings demonstrate that SphK1/S1P signaling may act as a canonical regulator of HIF-2α expression in ccRCC, giving support to its inhibition as a therapeutic strategy that could contribute to reduce HIF-2 activity in ccRCC.

3.
Oncogene ; 33(11): 1367-74, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23563181

RESUMEN

The mRNA cap-binding protein eIF4E (eukaryotic translation initiation factor 4E) permits ribosome recruitment to capped mRNAs, and its phosphorylated form has an important role in cell transformation. The oncogenic function of eIF4E is, however, antagonised by the hypophosphorylated forms of the inhibitory eIF4E-binding proteins 1 and 2. eIF4E-binding protein 1 and 2 (4E-BP1 and 2) are two major targets of the protein kinase mTOR, and are essential for the antiproliferative effects of mTOR inhibitors. Herein, we report that pancreas expresses specifically and massively 4E-BP1 (4E-BP2 is nearly undetectable). However, 4E-BP1 expression is extinguished in more than half of the human pancreatic ductal adenocarcinomas (PDAC). 4E-BP1 shutoff is recapitulated in a mouse genetic model of PDAC, which is based on a pancreas-specific mutation of Kras, the more frequently mutated oncogene in human pancreatic tumours. 4E-BP1 downregulation enhances eIF4E phosphorylation and facilitates pancreatic cancer cell proliferation in vitro and tumour development in vivo. Furthermore, 4E-BP1 loss combined with the absence of 4E-BP2 renders eIF4E phosphorylation, protein synthesis and cell proliferation resistant to mTOR inhibition. However, proliferation can be better limited by a recently developed compound that mimics the function of 4E-BP1 and 2 independently of mTOR inhibition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias Pancreáticas/patología , Fosfoproteínas/genética , Biosíntesis de Proteínas , Carcinogénesis , Proteínas de Ciclo Celular , Humanos , Fosforilación
4.
Oncogene ; 32(6): 671-7, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22508483

RESUMEN

The eIF4E-binding proteins (4E-BPs) are inhibitors of protein synthesis that sequester the mRNA cap-binding protein eIF4E and consequently block cell growth and proliferation. In most tumors however, their inhibitory function is compromised by major oncogenic signaling pathways. Recently, thanks to the generation of mouse genetic models, considerable progress has been made in elucidating the involvement of 4E-BPs and their unique target, eIF4E, in the process of carcinogenesis. Increasing evidence indicates that an 'addiction' to protein synthesis emerges in cancer cells, highlighting the potential that 4E-BPs have as targets for therapeutics. In this review, we summarize the biochemical function, regulation and anti-oncogenic activity of the 4E-BPs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Transformación Celular Neoplásica , Factor 4E Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/fisiología , Fosfoproteínas/fisiología , Animales , Proteínas de Ciclo Celular , Proliferación Celular , Factor 4F Eucariótico de Iniciación/metabolismo , Humanos , Fosforilación , Biosíntesis de Proteínas , Proteínas Represoras
5.
Leukemia ; 27(11): 2129-38, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23568147

RESUMEN

Previous reports demonstrate that metformin, an anti-diabetic drug, can decrease the risk of cancer and inhibit cancer cell growth. However, its mechanism in cancer cells is still unknown. Metformin significantly blocks cell cycle and inhibits cell proliferation and colony formation of leukemic cells. However, the apoptotic response to metformin varies. Furthermore, daily treatment with metformin induces apoptosis and reduces tumor growth in vivo. While metformin induces early and transient activation of AMPK, inhibition of AMPKα1/2 does not abrogate anti-proliferative or pro-apoptotic effects of metformin. Metformin decreases electron transport chain complex I activity, oxygen consumption and mitochondrial ATP synthesis, while stimulating glycolysis for ATP and lactate production, pentose phosphate pathway for purine biosynthesis, fatty acid metabolism, as well as anaplerotic and mitochondrial gene expression. Importantly, leukemic cells with high basal AKT phosphorylation, glucose consumption or glycolysis exhibit a markedly reduced induction of the Pasteur effect in response to metformin and are resistant to metformin-induced apoptosis. Accordingly, glucose starvation or treatment with deoxyglucose or an AKT inhibitor induces sensitivity to metformin. Overall, metformin elicits reprogramming of intermediary metabolism leading to inhibition of cell proliferation in all leukemic cells and apoptosis only in leukemic cells responding to metformin with AKT phosphorylation and a strong Pasteur effect.


Asunto(s)
Apoptosis/efectos de los fármacos , Hipoglucemiantes/farmacología , Leucemia/tratamiento farmacológico , Leucemia/patología , Metformina/farmacología , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Proliferación Celular/efectos de los fármacos , Cromatografía Liquida , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Técnicas para Inmunoenzimas , Ácido Láctico/metabolismo , Leucemia/metabolismo , Ratones , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Fosforilación/efectos de los fármacos , ARN Interferente Pequeño/genética , Espectrometría de Masa por Ionización de Electrospray , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Artículo en Inglés | MEDLINE | ID: mdl-17381337

RESUMEN

Translation initiation requires the participation of eukaryotic translation initiation factors (eIFs). The poly(A)-binding protein (PABP) is thought to stimulate translation by promoting mRNA circularization through simultaneous interactions with eIF4G and the 3' poly(A) tail. PABP activity is regulated by the PABP-interacting proteins (Paips), a family of proteins consisting of Paip1, a translational stimulator, and Paip2A and Paip2B, two translational inhibitors. Paip2A controls PABP homeostasis via ubiquitination. When the cellular concentration of PABP is reduced, Paip2A becomes ubiquitinated and degraded, resulting in the relief of PABP repression. Paip1 interacts with eIF4A and eIF3, which promotes translation. The regulation of PABP activity by Paips represents the first known mechanism for controlling PABP, adding a new layer to the existing knowledge of PABP function.


Asunto(s)
Proteínas de Unión a Poli(A)/metabolismo , Regiones no Traducidas 3' , Animales , Modelos Biológicos , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión a Poli(A)/genética , Biosíntesis de Proteínas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA