Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Inorg Chem ; 62(44): 18157-18171, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37871434

RESUMEN

Copper(I) halides are well-known for their structural diversity and rich photoluminescence properties, showing great potential for the development of solid-state lighting technology. A series of four molecular copper iodide clusters based on the [Cu4I4] cubane geometry is reported. Among them, [Cu8I8] octanuclear clusters of rare geometry resulting from dimerization of the tetranuclear counterparts were also synthesized. Two different phosphine ligands were studied, bearing either a styrene or an ethyl group. Therefore, the effect of the dimerization and of the ligand nature on the photophysical properties of the resulting clusters is investigated. The structural differences were analyzed by single-crystal X-ray diffraction (SCXRD), solid-state nuclear magnetic resonance (NMR), infrared, and Raman analyses. Compared to the ethyl group, the styrene function appears to greatly impact the photophysical properties of the clusters. The luminescence thermochromic properties of the ethyl derivatives and the intriguing photophysical properties of the clusters with styrene function were rationalized by density functional theory (DFT) calculations. Thus, the styrene group significantly lowers in energy the vacant orbitals and consequently affects the global energetic layout of the clusters. From this study, it was found that the nuclearity of copper iodide clusters eventually has less influence on the photophysical properties than the nature of the ligand. The design of proper ligands should therefore be considered when developing materials for specific lighting applications.

2.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36430944

RESUMEN

Tuberculosis (TB) is still a significant threat to human health. A promising solution is engineering nanoparticulate drug carriers to deliver anti-TB molecules. Itaconic acid (ITA) potentially has anti-TB activity; however, its incorporation in nanoparticles (NP) is challenging. Here we show an approach for preparing polymer-ITA conjugate NPs and a methodology for investigating the NP degradation and ITA release mechanism. The conjugate was synthesized by the two-directional growing of polylactic acid (PLA) chains, followed by capping their extremities with ITA. The poly(lactate)-itaconate PLA-ITA was then used to formulate NPs. The degradation and drug release processes of the polymer conjugate NPs were studied qualitatively and quantitatively. The molecular structures of released species were characterized by using liquid NMR spectroscopy and mass spectrometry. We discovered a complex NP hydrolysis process forming diverse oligomers, as well as monomeric lactic acid (LA) and drug ITA. The slow degradation process led to a low release of free drugs, although raising the pH from 5.3 to 7.4 induced a slight increase in the amounts of released products. TEM images showed that bulk erosion is likely to play the primary role in the degradation of PLA-ITA NPs. The overall results and methodology can be of interest for understanding the mechanisms of NP degradation and drug release of this new polymer-drug conjugate system.


Asunto(s)
Nanopartículas , Polímeros , Humanos , Polímeros/química , Nanopartículas/química , Poliésteres/química , Succinatos
3.
Chemistry ; 27(37): 9589-9596, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-33830553

RESUMEN

The synthesis and characterization of a polyrotaxanated covalent organic network (CON) based on the association between the viologen and pillar[5]arene (P[5]OH) units are reported. The mechanical bond allows for the irreversible insertion of n-type redox centers (P[5]OH macrocycles) within a pristine structure based on p-type viologen redox centers. Both redox units are active on a narrow potential range and, in water, the presence of P[5]OH greatly increases the electroactivity of the material.

4.
Magn Reson Chem ; 59(9-10): 1038-1047, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33709480

RESUMEN

Nanosized metal-organic frameworks (nanoMOFs) have emerged as a new class of biodegradable and nontoxic nanomaterials of high interest for biomedical applications thanks to the possibility to load large amounts of a wide variety of therapeutic molecules in their porous structure. The surface of the highly porous nanoMOFs is usually engineered to increase their colloidal stability, to tune their interactions with the biological environment, and to allow targeting specific cells or organs. However, the atomic-scale analysis of these complex core-shell materials is highly challenging. In this study, we report the investigation of aluminum-based nanoMOFs containing two fluorinated lipids by solid-state NMR spectroscopy, including 27 Al, 1 H and 19 F MAS NMR. The ensemble of NMR data provides a better understanding of the localization and conformation of the fluorinated lipids inside the pores or on the nanoMOF surface.

5.
Molecules ; 26(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34299416

RESUMEN

In the past decades, nanosized drug delivery systems (DDS) have been extensively developed and studied as a promising way to improve the performance of a drug and reduce its undesirable side effects. DDSs are usually very complex supramolecular assemblies made of a core that contains the active substance(s) and ensures a controlled release, which is surrounded by a corona that stabilizes the particles and ensures the delivery to the targeted cells. To optimize the design of engineered DDSs, it is essential to gain a comprehensive understanding of these core-shell assemblies at the atomic level. In this review, we illustrate how solid-state nuclear magnetic resonance (ssNMR) spectroscopy has become an essential tool in DDS design.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Resonancia Magnética Nuclear Biomolecular/métodos , Polímeros/química
6.
Inorg Chem ; 59(8): 5768-5780, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32233459

RESUMEN

The photoluminescent stimuli-responsive properties of two crystalline polymorphs with the formula (PPh4)2[Cu2I4] are reported. Distinct luminescence properties are exhibited by these ionic copper iodide compounds with blue or yellow emission, and original luminescence thermochromism and mechanochromism are demonstrated. While one polymorph displays contrasted temperature-dependent emission properties, the other shows great modification of its emission upon mechanical solicitation. The establishment of structure-properties relationships, supported by a theoretical approach, permits us to get insights into the origin of the photoluminescence properties and the mechanisms at play. According to DFT calculations, the different emission bands originate either from the (PPh4)+ organic cation or from the [Cu2I4]2- anion. Activation of these two emissive centers appears to be dependent on the crystalline packing of the polymorph. The thermochromism displayed by one polymorph can be attributed to a variation in temperature of the relative intensities of two emission bands of two different excited states. The origin is different for the other polymorph, with emission bands coming from two independent emissive centers: namely, (PPh4)+ and [Cu2I4]2-. The luminescence mechanochromism is attributed to a polymorphic transition. The mechanical solicitation induces a partial transformation of one polymorph into the other within a disordered phase. The mechanochromic mechanism can be related to mechanical modifications of intermolecular interactions between the (PPh4)+ cations. By displaying luminescence properties that depend on crystalline structure, excitation wavelength, temperature, and mechanical solicitation, the studied copper iodides offer a great possibility of emissive color control and switching, a clear demonstration of the great potentialities of this family of compounds for the development of photoactive materials.

7.
Inorg Chem ; 59(18): 13607-13620, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32909432

RESUMEN

In the field of stimuli-responsive luminescent materials, mechanochromic compounds exhibiting reversible emission color changes activated by mechanical stimulation present appealing perspectives in sensor applications. The mechanochromic luminescence properties of the molecular cubane copper iodide cluster [Cu4I4[PPh2(C6H4-CH2OH)]4] (1) are reported in this study. This compound can form upon melting an amorphous phase, giving an unprecedented opportunity to investigate the mechanochromism phenomenon. Because the mechanically induced crystalline-to-amorphous transition is only partial, the completely amorphous phase represents the ultimate state of the mechanically altered phase. Furthermore, the studied compound could form two different crystalline polymorphs, namely, [Cu4I4[PPh2(C6H4-CH2OH)]4]·C2H3N (1·CH3CN) and [Cu4I4[PPh2(C6H4-CH2OH)]4]·3C4H8O (1·THF), allowing the establishment of straightforward structure-property relationships. Photophysical and structural characterizations of 1 in different states were performed, and the experimental data were supported by theoretical investigations. Solid-state NMR analysis permitted quantification of the amorphous part in the mechanically altered phase. IR and Raman analysis enabled identification of the spectroscopic signatures of each state. Density functional theory calculations led to assignment of both the NMR characteristics and the vibrational bands. Rationalization of the photoluminescence properties was also conducted, with simulation of the phosphorescence spectra allowing an accurate interpretation of the thermochromic luminescence properties of this family of compounds. The combined study of crystalline polymorphism and the amorphous state allowed us to get deeper into the mechanochromism mechanism that implies changes of the [Cu4I4] cluster core geometry. Through the combination of multistimuli-responsive properties, copper iodide clusters constitute an appealing class of compounds toward original functional materials.

8.
Inorg Chem ; 59(14): 10129-10137, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32628480

RESUMEN

Vapor-phase infiltration (VPI), a technique derived from atomic layer deposition (ALD) and based on sequential self-limiting chemistry, is used to modify the stable microporous porphyrin-based metal-organic framework (MOF) MIL-173(Zr). VPI is an appealing approach to modifying MOFs by inserting reactants with atomic precision. The microporous nature and chemical stability of MIL-173 enable postsynthesis modification by VPI without MOF degradation even with extremely reactive precursors such as trimethylaluminum (TMA) and diethylzinc (DEZ). VPI proceeds through the diffusion of gaseous organometallic reactants TMA and DEZ inside the microporous framework, where they react with two kinds of chemical sites offered by the porphyrinic linker (phenolic and pyrrolic functions in the porphyrin core), without altering the crystallinity and permanent porosity of the MOF. 27Al NMR, UV-vis absorption, and IR spectroscopies are used to further characterize the modified material. Physisorption of both precursors is computationally simulated by grand canonical Monte Carlo methods and outlines the preferential adsorption sites. The impact of temperature, number of VPI cycles, and pulse length are investigated and show that aluminum and zinc are introduced in a saturating manner inside the MOF on both available reactive sites. The porosity prerequisite is outlined for VPI, which is proven to be much more effective than classical solution-based methods because it is solventless and fast, prevents workup steps, and allows reactions not possible by the classical solution approach.

9.
Inorg Chem ; 59(9): 6308-6318, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32286067

RESUMEN

A crystallographic approach incorporating multinuclear high field solid state NMR (SSNMR), X-ray structure determinations, TEM observation, and density functional theory (DFT) was used to characterize two polymorphs of rubidium cryolite, Rb3AlF6. The room temperature phase was found to be ordered and crystallizes in the Fddd (no. 70) space group with a = 37.26491(1) Å, b = 12.45405(4) Å, and c = 17.68341(6) Å. Comparison of NMR measurements and computational results revealed the dynamic rotations of the AlF6 octahedra. Using in situ variable temperature MAS NMR measurements, the chemical exchange between rubidium sites was observed. The ß-phase, i.e., high temperature polymorph, adopts the ideal cubic double-perovskite structure, space group Fm3m, with a = 8.9930(2) Å at 600 °C. Additionally, a series of polymorphs of K3AlF6 has been further characterized by high field high temperature SSNMR and DFT computation.

10.
Magn Reson Chem ; 58(11): 1099-1108, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31945203

RESUMEN

In the present work, our aim is to decipher the cationic ordering in the octahedral and tetrahedral sheets of two Al-rich synthetic materials, namely, phlogopites of nominal composition K(Mg3-x Alx )[Al1+x Si3-x O10 ](OH)y F2-y and lepidolites in the system trilithionite-polylithionite with composition K (Lix Al3-x )[Al4-2x Si2x O10 ](OH)y F2-y , by directly probing the aluminium distribution through 27 Al and 17 O magic-angle spinning, multiple-quantum magic-angle spinning, and 27 Al-27 Al double-quantum single-quantum nuclear magnetic resonance (NMR) experiments. Notably, 27 Al-27 Al double-quantum single-quantum magic-angle spinning NMR spectra, recorded at 9.34 and/or 20.00 T, show the spatial proximity or avoidance of the Al species inside or between the sheets. In both studied minerals, the ensemble of NMR data suggests a preference for [4] Al in the tetrahedral sheet to occupy position close to the [6] Al of the octahedral sheets.

11.
J Am Chem Soc ; 141(43): 17207-17216, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31590484

RESUMEN

Engineering the structural flexibility of metal-organic framework (MOF) materials for separation-related applications remains a great challenge. We present here a strategy of mixing rigid and soft linkers in a MOF structure to achieve tunable structural flexibility, as exemplified in a series of stable isostructural Zr-MOFs built with natural C4 linkers (fumaric acid, succinic acid, and malic acid). As shown by the differences in linker bond stretching and bending freedom, these MOFs display distinct responsive dynamics to external stimuli, namely, changes in temperature or guest molecule type. Comprehensive in situ characterizations reveal a clear correlation between linker character and MOF dynamic behavior, which leads to the discovery of a multivariate flexible MOF. It shows an optimal combination of both good working capacity and significantly enhanced selectivity for CO2/N2 separation. In principle, it provides a new avenue for potentially improving the ability of microporous MOFs to separate other gaseous and liquid mixtures.

12.
Magn Reson Chem ; 57(5): 224-229, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30325522

RESUMEN

The 1 H-29 Si multiple-contact cross polarization (MC-CP) MAS NMR experiment is evaluated for the class of silicate-siloxane copolymers called POSiSils, that is, polyoligosiloxysilicones. It proves a reasonably good solution to tackle the challenge of recording quantitative 29 Si NMR data in experimental time much reduced compared with single pulse acquisition. In a second time, we report 29 Si-29 Si MC-CP double-quantum single-quantum (MC-CP-DQ-SQ) NMR experiment, which provides information about the through-space proximities between all silicon species despite the high degree of heterogeneity of this material. This work furthers the NMR tools for NMR crystallography for inorganic polymers, as it covers flexible polymers with different dimensionalities and long or heterogeneous relaxation characteristics at low 29 Si natural abundance.

13.
J Am Chem Soc ; 140(6): 2028-2031, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29364654

RESUMEN

We describe solid-gas phase, single-crystal-to-single-crystal, postsynthetic modifications of a metal-organic framework (MOF). Using ozone, we quantitatively transformed the olefin groups of a UiO-66-type MOF into 1,2,4-trioxolane rings, which we then selectively converted into either aldehydes or carboxylic acids.

14.
Chemistry ; 24(71): 18868-18872, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30259587

RESUMEN

A copper iodide complex coordinated by three phosphine ligands with the formula [Cu2 I2 (Ph2 PC2 (C6 H4 )C2 PPh2 )3 ] exhibits solvatochromic and vapochromic luminescence properties. A mechanism based on solvent-dependent molecular motion appears to occur. The highly contrasted response observed upon THF solvent exposure makes this complex an appealing candidate for chemical sensor applications.

15.
Inorg Chem ; 57(19): 11961-11969, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30226759

RESUMEN

Nanoscale molecular clusters are attractive for the design of materials exhibiting original functions and properties. In particular, copper iodide clusters of high nuclearity are well-known for their stimuli-responsive luminescence properties. The synthesis and characterization of an unprecedented copper(I) iodide molecular cluster based on an original heptanuclear inorganic core are reported. This nanometer-size cluster is formulated as [Cu7I7(P(C6H4CF3)3)6(CH3CN)] and its novel structure has been characterized by X-ray diffraction and multinuclear solid-state 63Cu, 31P, 13C, 19F, and 1H NMR spectroscopy. The photoluminescence properties of this cluster have been studied at variable temperature. Density functional theory calculations have been performed on this large molecular structure and allow one to rationalize the observed luminescence properties. This study highlights the crucial role of cuprophilic interactions in molecular copper iodide clusters for exhibiting photoactive properties.

16.
Inorg Chem ; 57(8): 4328-4339, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29620359

RESUMEN

Luminescent materials based on copper complexes are currently receiving increasing attention because of their rich photophysical properties, opening a wide field of applications. The copper iodide clusters formulated [Cu4I4L4] (L = ligand), are particularly relevant for the development of multifunctional materials based on their luminescence stimuli-responsive properties. In this context, controlling and modulating their photophysical properties is crucial and this can only be achieved by thorough understanding of the origin of the optical properties. We thus report here, the comparative study of a series of cubane copper iodide clusters coordinated by different phosphine ligands, with the goal of analyzing the effect of the ligands nature on the photoluminescence properties. The synthesis, structural, and photophysical characterizations along with theoretical investigations of copper iodide clusters with ligands presenting different electronic properties, are described. A method to simplify the analysis of the 31P solid-state NMR spectra is also reported. While clusters with electron-donating groups present classical luminescence properties, the cluster bearing strong electron-withdrawing substituents exhibits original behavior demonstrating a clear influence of the ligands properties. In particular, the electron-withdrawing character induces a decrease in energy of the unoccupied molecular orbitals, that consequently impacts the emission properties. The modification of the luminescence thermochromic properties of the clusters are supported by density functional theory (DFT) calculations. This study demonstrates that the control of the luminescence properties of these compounds can be achieved through modification of the coordinated ligands, nevertheless the role of the crystal packing should not be underestimated.

17.
Chemistry ; 23(47): 11286-11293, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28590596

RESUMEN

A new copolymer consisting of double four ring (D4R) silicate units linked by dimethylsilicone monomer referred to as polyoligosiloxysilicone number one (PSS-1) was synthesized. The D4R building unit is provided by hexamethyleneimine cyclosilicate hydrate crystals, which were dehydrated and reacted with dichlorodimethylsilane. The local structure of D4R silicate units and dimethyl silicone monomers was revealed by multidimensional solid-state NMR, FTIR and modeling. On average, D4R silicate units have 6.8 silicone linkages. Evidence for preferential unidirectional growth and chain ordering within the PSS-1 copolymer was provided by STEM and TEM. The structure of PSS-1 copolymer consists of twisted columns of D4R silicate units with or without cross-linking. Both models are consistent with the spectroscopic, microscopic and physical properties. PSS-1 chains are predicted to be mechanically strong compared to silicones such as PDMS, yet more flexible than rigid silica materials such as zeolites.

18.
Inorg Chem ; 56(20): 12379-12388, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-28949130

RESUMEN

Luminescent mechanochromic materials exhibiting reversible changes of their emissive properties in response to external mechanical forces are currently emerging as an important class of stimuli-responsive materials because of promising technological applications. Here, we report on the luminescence mechanochromic properties of a [Cu4I4(PPh3)4] copper iodide cluster presenting a chair geometry, being an isomer of the most common cubane form. This molecular cluster formulated [Cu4I4(PPh3)4]·2CHCl3 (1) exhibits a highly contrasted emission response to manual grinding, and, interestingly, the optical properties of the ground phase present striking similarities with those of the cubane isomer. In order to understand the underlying mechanism, a comparison with two related compounds has been conducted. The first one is a pseudopolymorph of 1 formulated as [Cu4I4(PPh3)4]·CH2Cl2 (2), which exhibits luminescent mechanochromic properties as well. The other one is also a chair compound but with a slightly different phosphine ligand, namely, [Cu4I4(PPh2C6H4CO2H)4] (3), lacking mechanochromic properties. Structural and optical characterizations of the clusters have been analyzed in light of previous electronic structure calculations. The results suggest an unpreceded mechanochromism phenomenon based on a solid-state chair → cubane isomer conversion. This study shows that polynuclear copper iodide compounds are particularly relevant for the development of luminescent mechanochromic materials.

19.
Artículo en Inglés | MEDLINE | ID: mdl-28089089

RESUMEN

In this paper, we review and illustrate applications, reported in the literature or used in our group, of 27Al-27Al double-quantum single-quantum (DQ-SQ) MAS NMR experiments for the structural characterization of Al-containing microporous solids, namely zeolites, aluminophosphates and metal-organic frameworks. Information regarding the periodic frameworks or the localization of the various aluminum species in the materials are obtained from the analysis of the two-dimensional NMR spectra, which allows getting local structural details sometimes inaccessible from other characterization technique. An application of 27Al-27Al of the DQ-SQ experiment for the detection of aluminum pairing in zeolite is shown.

20.
Magn Reson Chem ; 55(10): 902-908, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28437584

RESUMEN

The potential of high-field NMR to measure solid-state 95 Mo and 183 W NMR in polyoxometalates (POMs) is explored using some archetypical structures like Lindqvist, Keggin and Dawson as model compounds that are well characterized in solution. NMR spectra in static and under magic angle spinning (MAS) were obtained, and their analysis allowed extraction of the NMR parameters, including chemical shift anisotropy and quadrupolar coupling parameters. Despite the inherent difficulties of measurement in solid state of these low-gamma NMR nuclei, due mainly to the low spectral resolution and poor signal-to-noise ratio, the observed global trends compare well with the solution-state NMR data. This would open an avenue for application of solid-state NMR to POMs, especially when liquid-state NMR is not possible, e.g., for poorly soluble or unstable compounds in solution, and for giant molecules with slow tumbling motion. This is the case of Keplerate where we provide here the first NMR characterization of this class of POMs in the solid state. Copyright © 2017 John Wiley & Sons, Ltd.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA