Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152755

RESUMEN

Cobalamin C (Cbl-C) defect causes methylmalonic acidemia, homocystinuria, intellectual disability and visual impairment, despite treatment adherence. While international guidelines recommend parenteral hydroxocobalamin (OH-Cbl) as effective treatment, dose adjustments remain unclear. We assessed OH-Cbl therapy impact on biochemical, neurocognitive and visual outcomes in early-onset Cbl-C patients treated with different OH-Cbl doses over 3 years. Group A (n = 5), diagnosed via newborn screening (NBS), received high-dose OH-Cbl (median 0.55 mg/kg/day); Group B1 (n = 3), NBS-diagnosed, received low-dose OH-Cbl (median 0.09 mg/kg/day); Group B2 (n = 12), diagnosed on clinical bases, received low-dose OH-Cbl (median 0.06 mg/kg/day). Biochemical analyses revealed better values of homocysteine, methionine and methylmalonic acid in Group A compared to Group B1 (p < 0.01, p < 0.05 and p < 0.01, respectively) and B2 (p < 0.001, p < 0.01 and p < 0.001, respectively). Neurodevelopmental assessment showed better outcome in Group A compared to low-dose treated Groups B1 and B2, especially in Developmental Quotient, Hearing and Speech and Performance subscales without significant differences between Group B2 and Group B1. Maculopathy was detected in 100%, 66% and 83% of patients in the three groups, respectively. This study showed that "high-dose" OH-Cbl treatment in NBS-diagnosed children with severe early-onset Cbl-C defect led to a significant improvement in the metabolic profile and in neurocognitive outcome, compared to age-matched patients treated with a "low-dose" regimen. Effects on maculopathy seem unaffected by OH-Cbl dosage. Our findings, although observed in a limited number of patients, may contribute to improve the long-term outcome of Cbl-C patients.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167261, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777099

RESUMEN

PURA, also known as Pur-alpha, is an evolutionarily conserved DNA/RNA-binding protein crucial for various cellular processes, including DNA replication, transcriptional regulation, and translational control. Comprising three PUR domains, it engages with nucleic acids and has a role in protein-protein interactions. The manifestation of PURA syndrome, arising from mutations in the PURA gene, presents neurologically with developmental delay, hypotonia, and seizures. In our prior work from 2018, we highlighted the unique case of a PURA patient displaying hypoglycorrhachia, suggesting a potential association with GLUT1 dysfunction in this syndrome. In this current study, we expand the patient cohort with PURA mutations exhibiting hypoglycorrhachia and aim to unravel the molecular basis of this phenomenon. We established an in vitro model in HeLa cells to modulate PURA expression and investigated GLUT1 function and expression. Our findings indicate that PURA levels directly impact glucose uptake through the functioning of GLUT1, without influencing significantly GLUT1 expression. Moreover, our study reveals evidence for a possible physical interaction between PURA and GLUT1, demonstrated by colocalization and co-immunoprecipitation of both proteins. Computational analyses, employing molecular dynamics, further corroborates these findings, demonstrating that PURA:GLUT1 interactions are plausible, and that the stability of the complex is altered when PURA is truncated and/or mutated. In conclusion, our results suggest that PURA plays a pivotal role in driving the function of GLUT1 for glucose uptake, potentially forming a regulatory complex. Additional investigations are warranted to elucidate the precise mechanisms governing this complex and its significance in ensuring proper GLUT1 function.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Femenino , Humanos , Masculino , Encéfalo/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Células HeLa , Mutación , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
3.
Brain Commun ; 6(3): fcae160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756539

RESUMEN

Autosomal recessive pathogenetic variants in the DGUOK gene cause deficiency of deoxyguanosine kinase activity and mitochondrial deoxynucleotides pool imbalance, consequently, leading to quantitative and/or qualitative impairment of mitochondrial DNA synthesis. Typically, patients present early-onset liver failure with or without neurological involvement and a clinical course rapidly progressing to death. This is an international multicentre study aiming to provide a retrospective natural history of deoxyguanosine kinase deficient patients. A systematic literature review from January 2001 to June 2023 was conducted. Physicians of research centres or clinicians all around the world caring for previously reported patients were contacted to provide followup information or additional clinical, biochemical, histological/histochemical, and molecular genetics data for unreported cases with a confirmed molecular diagnosis of deoxyguanosine kinase deficiency. A cohort of 202 genetically confirmed patients, 36 unreported, and 166 from a systematic literature review, were analyzed. Patients had a neonatal onset (≤ 1 month) in 55.7% of cases, infantile (>1 month and ≤ 1 year) in 32.3%, pediatric (>1 year and ≤18 years) in 2.5% and adult (>18 years) in 9.5%. Kaplan-Meier analysis showed statistically different survival rates (P < 0.0001) among the four age groups with the highest mortality for neonatal onset. Based on the clinical phenotype, we defined four different clinical subtypes: hepatocerebral (58.8%), isolated hepatopathy (21.9%), hepatomyoencephalopathy (9.6%), and isolated myopathy (9.6%). Muscle involvement was predominant in adult-onset cases whereas liver dysfunction causes morbidity and mortality in early-onset patients with a median survival of less than 1 year. No genotype-phenotype correlation was identified. Liver transplant significantly modified the survival rate in 26 treated patients when compared with untreated. Only six patients had additional mild neurological signs after liver transplant. In conclusion, deoxyguanosine kinase deficiency is a disease spectrum with a prevalent liver and brain tissue specificity in neonatal and infantile-onset patients and muscle tissue specificity in adult-onset cases. Our study provides clinical, molecular genetics and biochemical data for early diagnosis, clinical trial planning and immediate intervention with liver transplant and/or nucleoside supplementation.

4.
Front Genet ; 14: 1307934, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239854

RESUMEN

Desmosterolosis is a rare sterol biosynthesis disorder characterized by multiple congenital anomalies, failure to thrive, severe developmental delay, progressive epileptic encephalopathy, and elevated levels of desmosterol caused by biallelic mutations of DHCR24 encoding 3-ß-hydroxysterol Δ-24-reductase. DHCR24 is regarded as the key enzyme of cholesterol synthesis in the metabolism of brain cholesterol as it catalyzes the reduction of the Δ-24 double bond of sterol intermediates during cholesterol biosynthesis. To date, 15 DHCR24 variants, detected in 2 related and 14 unrelated patients, have been associated with the desmosterolosis disorder. Here, we describe a proband harboring the never-described DHCR24 homozygous missense variant NM_014762.4:c.506T>C, NP_055577.1:p.M169T, whose functional validation was confirmed through biochemical assay. By using molecular dynamics simulation techniques, we investigated the impact of this variant on the protein stability and interaction network with the flavin adenine dinucleotide cofactor, thereby providing a preliminary assessment of its mechanistic role in comparison to all known pathogenic variants, the wild-type protein, and a known benign DHCR24 variant. This report expands the clinical and molecular spectra of the DHCR24-related disorder, reports on a novel DHCR24 deleterious variant associated with desmosterolosis, and gives new insights into genotype-phenotype correlations.

5.
J. appl. oral sci ; 24(2): 107-113, Mar.-Apr. 2016. tab
Artículo en Inglés | LILACS | ID: lil-779906

RESUMEN

ABSTRACT Young swimmers are particularly susceptible to the onset of oral diseases. Objective To evaluate the oral health status in young competitive and non-competitive swimmers, involving an assessment of salivary cariogenic bacteria and secretory IgA (S-IgA) concentration. Material and Methods Before training sessions (T1), 54 competitive and 69 non-competitive swimmers had the following parameters assessed: decayed, missing, and filled teeth (DMFT), Plaque Index (PlI), and Gingival Index (GI). At T1 and after training sessions (T2), stimulated saliva was collected and microbiological and immunological analyses were performed. Results Competitive swimmers trained 2.02±0.09 hours 5 times a week, while non-competitive swimmers trained 2.03±0.18 hours a week. A total of 14.7% of competitive swimmers suffered dental trauma related to sports. Only 11.76% of the competitive swimmers took a daily dose of fluoride, against 32.65% of non-competitive swimmers (p=0.029). Neither group followed an established diet or presented statistically significant differences in terms of nutritional supplement drink and chocolate intake. There were statistically significant differences in terms of oral hygiene. No significant difference in clinical indexes (DMFT, PlI, and GI) was present. S. mutans was harbored by 18.6% of competitive and the 32.2% of non-competitive swimmers. S. sobrinus was detected in 22.03% of competitive and 91.6% of non-competitive swimmers (p<0.05). S. sanguinis was found only in the saliva of competitive swimmers. The average S-IgA of competitive swimmers decreased significantly at T2 (p<0.05). The pool water had a daily average pH of 7.22. Conclusions Microbial markers, immune status and sporting characteristics are important for establishing guidelines for management of training load in order to minimize physical stress and the risk of oral infection.


Asunto(s)
Humanos , Masculino , Femenino , Niño , Adolescente , Atletas , Inmunoglobulina A Secretora/análisis , Salud Bucal , Saliva/química , Saliva/microbiología , Natación/fisiología , Caries Dental/epidemiología , Encuestas de Salud Bucal , ADN Bacteriano , Estado de Salud , Italia/epidemiología , Reacción en Cadena de la Polimerasa , Factores de Riesgo , Estadísticas no Paramétricas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA