Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36904383

RESUMEN

Over the last decades, the growing contamination of wastewater, mainly caused by industrial processes, improper sewage, natural calamities, and a variety of anthropogenic activities, has caused an increase in water-borne diseases. Notably, industrial applications require careful consideration as they pose significant threats to human health and ecosystem biodiversity due to the production of persistent and complex contaminants. The present work reports on the development, characterization, and application of a poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) porous membrane for the remediation of a wide range of contaminants from wastewater withdrawn from industrial applications. The PVDF-HFP membrane showed a micrometric porous structure with thermal, chemical, and mechanical stability and a hydrophobic nature, leading to high permeability. The prepared membranes exhibited simultaneous activity on the removal of organic matter (total suspended and dissolved solids, TSS, and TDS, respectively), the mitigation of salinity in 50%, and the effective removal of some inorganic anions and heavy metals, achieving efficiencies around 60% for nickel, cadmium, and lead. The membrane proved to be a suitable approach for wastewater treatment, as it showed potential for the simultaneous remediation of a wide range of contaminants. Thus, the as-prepared PVDF-HFP membrane and the designed membrane reactor represent an efficient, straightforward, and low-cost alternative as a pretreatment step for continuous treatment processes for simultaneous organic and inorganic contaminants' remediation in real industrial effluent sources.

2.
Membranes (Basel) ; 12(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36135867

RESUMEN

The presence of contaminants of emerging concern (CEC), such as pharmaceuticals, in water sources is one of the main concerns nowadays due to their hazardous properties causing severe effects on human health and ecosystem biodiversity. Niflumic acid (NFA) is a widely used anti-inflammatory drug, and it is known for its non-biodegradability and resistance to chemical and biological degradation processes. In this work, a 10 wt.% TiO2/PVDF-TrFE nanocomposite membrane (NCM) was prepared by the solvent casting technique, fully characterized, and implemented on an up-scaled photocatalytic membrane reactor (PMR). The photocatalytic activity of the NCM was evaluated on NFA degradation under different experimental conditions, including NFA concentration, pH of the media, irradiation time and intensity. The NCM demonstrated a remarkable photocatalytic efficiency on NFA degradation, as efficiency of 91% was achieved after 6 h under solar irradiation at neutral pH. The NCM proved effective in long-term use, with maximum efficiency losses of 7%. An artificial neural network (ANN) model was designed to model NFA's photocatalytic degradation behavior, demonstrating a good agreement between experimental and predicted data, with an R2 of 0.98. The relative significance of each experimental condition was evaluated, and the irradiation time proved to be the most significant parameter affecting the NFA degradation efficiency. The designed ANN model provides a reliable framework l for modeling the photocatalytic activity of TiO2/PVDF-TrFE and related NCM.

3.
Polymers (Basel) ; 13(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34771275

RESUMEN

Two significant limitations of using TiO2 nanoparticles for water treatment applications are reduced photocatalytic activity under visible radiation and difficulty recovering the particles after use. In this study, round-shaped Ag@TiO2 nanocomposites with a ≈21 nm diameter and a bandgap energy of 2.8 eV were synthesised by a deposition-precipitation method. These nanocomposites were immobilised into a porous poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) matrix and well-distributed within the pores. The photocatalytic activity of Ag@TiO2/PVDF-HFP against metronidazole (MNZ) under solar radiation was evaluated. Further, an adaptive neuro-fuzzy inference system (ANFIS) was applied to predict the effect of four independent variables, including initial pollutant concentration, pH, light irradiation intensity, and reaction time, on the photocatalytic performance of the composite membrane on MNZ degradation. The 10% Ag@TiO2/PVDF-HFP composite membrane showed a maximum removal efficiency of 100% after 5 h under solar radiation. After three use cycles, this efficiency remained practically constant, demonstrating the membranes' reusability and suitability for water remediation applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA