Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(26): 68177-68190, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37119483

RESUMEN

This work highlights the methodology for the development of diffusive gradients in thin films (o-DGT) through its adaptation for 12 natural and synthetic hormones belonging to three different families (estrogens, progestins, and androgens). A reliable strategy must be applied during o-DGT lab adaptation to avoid issues related to the analysis (i.e., presence of matrix effects in grab or passive samples) but also to the o-DGT configuration (i.e., undesirable sorption or desorption, lack of performance with insufficient elution or unreliable diffusion coefficient). To avoid analytical issues due to the presence of salts in grab samples, CaCl2 exposure solutions must be used on a lab-scale development to monitor the hormone concentration. The selected o-DGT was composed of an Oasis® HLB binding gel and a diffusive gel in agarose because they provided better performance than polyacrylamide gels (i.e., higher elution factors and more repeatable diffusion coefficients). The elution factors of the binding gel were then from 0.79 ± 0.13 to 1.04 ± 0.13 (RSD < 15%) and the diffusion coefficients at 25 °C were from 4.07 ± 0.24 to 5.49 ± 0.28 × 10-6 cm2 s-1 (RSD < 9%). A laboratory exposure to a synthetic solution was performed to check the consistency with the DGT quantification model validating the calibration parameters for all hormones (except 17α-ethinylestradiol with a bias of 40%). Therefore, the o-DGT configuration is suitable for sampling hormones in the natural environment with LOQDGT ranging from 0.3 to 6.6 ng L-1.


Asunto(s)
Contaminantes Químicos del Agua , Humanos , Calibración , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Aclimatación , Difusión , Andrógenos/análisis
2.
Environ Pollut ; 323: 121257, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36828359

RESUMEN

In this work, the performances of a Large Diffusive Gradients in Thin films (L-DGT, i.e., a DGT based on a Chemcatcher® holder with a 5-fold larger sampling area) were compared on-field with the conventional DGT and the Polar Organic Chemical Integrative Sampler (POCIS) for the monitoring of a wide range of organic contaminants (i.e., 65 pesticides and metabolites, 53 pharmaceuticals and 12 hormones). These three passive samplers were simultaneously deployed in four rivers during 14 days. Their performances were then evaluated according to their detection and quantification capacities and their physical robustness. The results obtained confirm the advantages of the L-DGT over the conventional DGT regarding its sensitivity but also its robustness during field deployment. The POCIS provides the higher sensitivity, allowing the detection of more organic compounds compared to the DGT and, to a lesser extent, the L-DGT. However, both L-DGT and DGT reduces the uncertainty on the determination of the time-weighted average concentrations (CW), mainly due to the narrow range of variation of their calibration parameters. Indeed, for a given compound, CW can vary up to only a 3-fold factor with DGT and L-DGT compared to a 2 to 10-fold factor (up to 50) with POCIS. Thus, the L-DGT appears to be more suitable than DGT in low-contaminated contexts, which require higher sensitivity, or than POCIS when a CW determination is needed. For a qualitative evaluation however, the POCIS remains the most suitable passive sampler.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Plaguicidas/análisis , Compuestos Orgánicos , Difusión
3.
Talanta ; 243: 123390, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35338929

RESUMEN

An analysis method for four families of hormones (estrogens, progestins, androgens and prostaglandins), dedicated to an efficient water monitoring with passive sampling, was developed using a liquid chromatography tandem mass spectrometry with triple quadrupole coupling and universal electrospray ionisation. Thirteen natural and synthetic hormones in ultra-pure water could be analysed in a single run according to the French Standard NF T90-210: calibration range of 0.1 (except for 17ß-Estradiol, Estriol, Estrone and Diethylstilbestrol, from 0.5 µg/L; and Ethinylestradiol, from 1 µg/L) to 20 µg/L with linear regressions (R2 ≥ 0.96), maximum accuracy deviations of 30% at intermediate fidelity for three concentration references (1, 10 and 20 µg/L) and instrumental LOQs from 0.05 to 1 µg/L. The stability of 11 hormones (10 µg/L) was studied under several storage conditions and sample evaporation. All selected hormones were stable for 60 days at -18 °C, 7 days at 4 °C and 7 days at 20 °C but continued drying flow after evaporation should be avoided, especially for 17α-Estradiol, Estrone and Diethylstilbestrol. Observed matrix effects using o-DGT extracts (diffusive gradient in thin-film sampler for polar organics) containing an environmental matrix varied from 24 to 92% but all matrix effects were corrected with IS use. Therefore, the developed method, coupled with o-DGT, was tested with the o-DGT deployment in rivers. Using diffusion coefficients from the literature or lab determined, the concentrations in the rivers varied for Estrone from 1.8 ng/L to 2.5 ng/L, and for Androstenedione from 0.4 to 1.1 ng/L.


Asunto(s)
Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , Cromatografía Liquida , Monitoreo del Ambiente/métodos , Estradiol/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis
4.
Sci Total Environ ; 754: 142147, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254868

RESUMEN

The contribution of Diffusive Gradients in Thin films (DGT) passive sampling to continental water quality monitoring was assessed in a real measurement network (6 sampling campaigns, 17 stations). Ten metals/metalloids (Al, Zn, Ni, Cd, Cu, Pb, Cr, As, Se and Sb) were studied using the control laboratory's working conditions with grab and DGT passive sampling. The DGT field deployments were robust, with a 3% sampler loss rate and a <65% average relative deviation between duplicates. Compared to grab sampling, DGT showed a similar quantification frequency for half of the targeted elements but showed a higher frequency for the other half (e.g., Cd quantification at 20% with grab sampling vs. 97% with DGT). Similar concentration trends were established using DGT and grab sampling at most sites throughout the year. Notably, for some elements, trends were only provided by DGT sampling. A study of several DGT blanks showed that the device contamination was occasional and originated primarily from cross-contamination during the disassembly step. Considering this contamination, the operational sensitivity by DGT was at least between 1 and 5 times greater in comparison to that by grab sampling. Estimations of the economic cost revealed that measurement networks cost 2 to 3 times more when monitored by DGT compared to standard grab monitoring. However, the information obtained based on each type of sampling method is different. Grab sampling is easy to implement and can highlight high contamination peaks. The DGT concentrations are averaged over time and are relevant to chronic exposure evaluations. Considering the good performance of the DGT sampling highlighted in this study and its complementarity with grab sampling in terms of water quality assessments, a combination of these two types of sampling, which can be affordable, should improve the water quality evaluation within monitoring networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA