Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(7): e2213682120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745816

RESUMEN

Oxytocin (OT) is a prominent regulator of many aspects of mammalian social behavior and stored in large dense-cored vesicles (LDCVs) in hypothalamic neurons. It is released in response to activity-dependent Ca2+ influx, but is also dependent on Ca2+ release from intracellular stores, which primes LDCVs for exocytosis. Despite its importance, critical aspects of the Ca2+-dependent mechanisms of its secretion remain to be identified. Here we show that lysosomes surround dendritic LDCVs, and that the direct activation of endolysosomal two-pore channels (TPCs) provides the critical Ca2+ signals to prime OT release by increasing the releasable LDCV pool without directly stimulating exocytosis. We observed a dramatic reduction in plasma OT levels in TPC knockout mice, and impaired secretion of OT from the hypothalamus demonstrating the importance of priming of neuropeptide vesicles for activity-dependent release. Furthermore, we show that activation of type 1 metabotropic glutamate receptors sustains somatodendritic OT release by recruiting TPCs. The priming effect could be mimicked by a direct application of nicotinic acid adenine dinucleotide phosphate, the endogenous messenger regulating TPCs, or a selective TPC2 agonist, TPC2-A1-N, or blocked by the antagonist Ned-19. Mice lacking TPCs exhibit impaired maternal and social behavior, which is restored by direct OT administration. This study demonstrates an unexpected role for lysosomes and TPCs in controlling neuropeptide secretion, and in regulating social behavior.


Asunto(s)
Canales de Calcio , Oxitocina , Ratones , Animales , Canales de Calcio/metabolismo , Oxitocina/metabolismo , Calcio/metabolismo , Ratones Noqueados , Lisosomas/metabolismo , NADP/metabolismo , Señalización del Calcio/fisiología , Mamíferos/metabolismo
2.
Handb Exp Pharmacol ; 278: 3-34, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35879580

RESUMEN

The discovery of NAADP-evoked Ca2+ release in sea urchin eggs and then as a ubiquitous Ca2+ mobilizing messenger has introduced several novel paradigms to our understanding of Ca2+ signalling, not least in providing a link between cell stimulation and Ca2+ release from lysosomes and other acidic Ca2+ storage organelles. In addition, the hallmark concentration-response relationship of NAADP-mediated Ca2+ release, shaped by striking activation/desensitization mechanisms, influences its actions as an intracellular messenger. There has been recent progress in our understanding of the molecular mechanisms underlying NAADP-evoked Ca2+ release, such as the identification of the endo-lysosomal two-pore channel family of cation channels (TPCs) as their principal target and the identity of NAADP-binding proteins that complex with them. The NAADP/TPC signalling axis has gained recent prominence in pathophysiology for their roles in such disease processes as neurodegeneration, tumorigenesis and cellular viral entry.


Asunto(s)
Canales de Calcio , Calcio , Humanos , Canales de Calcio/metabolismo , Calcio/metabolismo , Transducción de Señal , NADP/metabolismo , Lisosomas/metabolismo , Señalización del Calcio/fisiología
3.
Biochem Soc Trans ; 50(4): 1143-1155, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35959977

RESUMEN

In recent years, our understanding of the structure, mechanisms and functions of the endo-lysosomal TPC (two-pore channel) family have grown apace. Gated by the second messengers, NAADP and PI(3,5)P2, TPCs are an integral part of fundamental signal-transduction pathways, but their array and plasticity of cation conductances (Na+, Ca2+, H+) allow them to variously signal electrically, osmotically or chemically. Their relative tissue- and organelle-selective distribution, together with agonist-selective ion permeabilities provides a rich palette from which extracellular stimuli can choose. TPCs are emerging as mediators of immunity, cancer, metabolism, viral infectivity and neurodegeneration as this short review attests.


Asunto(s)
Canales de Calcio , Calcio , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Lisosomas/metabolismo , NADP/metabolismo , Transducción de Señal
4.
FASEB J ; 33(5): 5823-5835, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30844310

RESUMEN

Autism spectrum disorder (ASD) is characterized by early onset of behavioral and cognitive alterations. Low plasma levels of oxytocin (OT) have also been found in ASD patients; recently, a critical role for the enzyme CD38 in the regulation of OT release was demonstrated. CD38 is important in regulating several Ca2+-dependent pathways, but beyond its role in regulating OT secretion, it is not known whether a deficit in CD38 expression leads to functional modifications of the prefrontal cortex (PFC), a structure involved in social behavior. Here, we report that CD38-/- male mice show an abnormal cortex development, an excitation-inhibition balance shifted toward a higher excitation, and impaired synaptic plasticity in the PFC such as those observed in various mouse models of ASD. We also show that a lack of CD38 alters social behavior and emotional responses. Finally, examining neuromodulators known to control behavioral flexibility, we found elevated monoamine levels in the PFC of CD38-/- adult mice. Overall, our study unveiled major changes in PFC physiologic mechanisms and provides new evidence that the CD38-/- mouse could be a relevant model to study pathophysiological brain mechanisms of mental disorders such as ASD.-Martucci, L. L., Amar, M., Chaussenot, R., Benet, G., Bauer, O., de Zélicourt, A., Nosjean, A., Launay, J.-M., Callebert, J., Sebrié, C., Galione, A., Edeline, J.-M., de la Porte, S., Fossier, P., Granon, S., Vaillend, C., Cancela, J.-M., A multiscale analysis in CD38-/- mice unveils major prefrontal cortex dysfunctions.


Asunto(s)
ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Plasticidad Neuronal , Corteza Prefrontal/fisiopatología , Aminas/metabolismo , Animales , Ansiedad , Trastorno del Espectro Autista/genética , Conducta Animal , Tronco Encefálico , Calcio/metabolismo , Miedo , Regulación de la Expresión Génica , Genotipo , Imagen por Resonancia Magnética , Masculino , Aprendizaje por Laberinto , Megalencefalia/fisiopatología , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxitocina/sangre , Polimorfismo de Nucleótido Simple , Reflejo de Sobresalto , Factores de Riesgo , Conducta Social
5.
Biomedicines ; 11(5)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37239034

RESUMEN

Cerebral ischemia results in oxygen and glucose deprivation that most commonly occurs after a reduction or interruption in the blood supply to the brain. The consequences of cerebral ischemia are complex and involve the loss of metabolic ATP, excessive K+ and glutamate accumulation in the extracellular space, electrolyte imbalance, and brain edema formation. So far, several treatments have been proposed to alleviate ischemic damage, yet few are effective. Here, we focused on the neuroprotective role of lowering the temperature in ischemia mimicked by an episode of oxygen and glucose deprivation (OGD) in mouse cerebellar slices. Our results suggest that lowering the temperature of the extracellular 'milieu' delays both the increases in [K+]e and tissue swelling, two dreaded consequences of cerebellar ischemia. Moreover, radial glial cells (Bergmann glia) display morphological changes and membrane depolarizations that are markedly impeded by lowering the temperature. Overall, in this model of cerebellar ischemia, hypothermia reduces the deleterious homeostatic changes regulated by Bergmann glia.

6.
Cell Calcium ; 104: 102582, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35462080

RESUMEN

Ca2+ signalling is of prime importance in controlling numerous cell functions in the brain. Endolysosomes are acidic organelles currently emerging as important Ca2+ stores in astrocytes, microglia, endothelial cells, and neurons. In neurons, these acidic Ca2+ stores are found in axons, soma, dendrites, and axon endings and could provide local sources of Ca2+ to control synaptic transmission, neuronal plasticity, and autophagy to name a few. This review will address how acidic Ca2+ stores are recruited in response to cell stimulation. We will focus on the role of the endolysosomal two-pore channels (TPCs) and their physiological agonist nicotinic acid adenine dinucleotide phosphate (NAADP) and how they interact with cyclic ADP-ribose and ryanodine receptors from the endoplasmic reticulum. Finally, this review will describe new pharmacological tools and animal mutant models now available to explore acidic Ca2+ stores as key elements in brain function and dysfunction.


Asunto(s)
Señalización del Calcio , Calcio , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Retículo Endoplásmico/metabolismo , Células Endoteliales/metabolismo , NADP/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA