Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurobiol Dis ; 62: 113-23, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24075852

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder behind Alzheimer's disease. There are currently no therapies proven to halt or slow the progressive neuronal cell loss in PD. A better understanding of the molecular and cellular causes of PD is needed to develop disease-modifying therapies. PD is an age-dependent disease that causes the progressive death of dopamine-producing neurons in the brain. Loss of substantia nigra dopaminergic neurons results in locomotor symptoms such as slowness of movement, tremor, rigidity and postural instability. Abnormalities in other neurotransmitters, such as serotonin, may also be involved in both the motor and non-motor symptoms of PD. Most cases of PD are sporadic but many families show a Mendelian pattern of inherited Parkinsonism and causative mutations have been identified in genes such as Parkin, DJ-1, PINK1, alpha-synuclein and leucine rich repeat kinase 2 (LRRK2). Although the definitive causes of idiopathic PD remain uncertain, the activity of the antioxidant enzyme glutathione peroxidase 1 (Gpx1) is reduced in PD brains and has been shown to be a key determinant of vulnerability to dopaminergic neuron loss in PD animal models. Furthermore, Gpx1 activity decreases with age in human substantia nigra but not rodent substantia nigra. Therefore, we crossed mice deficient for both Parkin and DJ-1 with mice deficient for Gpx1 to test the hypothesis that loss-of-function mutations in Parkin and DJ-1 cause PD by increasing vulnerability to Gpx1 deficiency. Surprisingly, mice lacking Parkin, DJ-1 and Gpx1 have increased striatal dopamine levels in the absence of nigral cell loss compared to wild type, Gpx1(-/-), and Parkin(-/-)DJ-1(-/-) mutant mice. Additionally, Parkin(-/-)DJ-1(-/-) mice exhibit improved rotarod performance and have increased serotonin in the striatum and hippocampus. Stereological analysis indicated that the increased serotonin levels were not due to increased serotonergic projections. The results of our behavioral, neurochemical and immunohistochemical analyses reveal that PD-linked mutations in Parkin and DJ-1 cause dysregulation of neurotransmitter systems beyond the nigrostriatal dopaminergic circuit and that loss-of-function mutations in Parkin and DJ-1 lead to adaptive changes in dopamine and serotonin especially in the context of Gpx1 deficiency.


Asunto(s)
Monoaminas Biogénicas/análisis , Cuerpo Estriado/química , Glutatión Peroxidasa/genética , Hipocampo/química , Proteínas Oncogénicas/genética , Enfermedad de Parkinson/genética , Ubiquitina-Proteína Ligasas/genética , Factores de Edad , Animales , Recuento de Células , Dopamina/análisis , Neuronas Dopaminérgicas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/genética , Peroxirredoxinas , Proteína Desglicasa DJ-1 , Serotonina/análisis , Glutatión Peroxidasa GPX1
2.
J Neuroinflammation ; 10: 50, 2013 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-23622116

RESUMEN

BACKGROUND: Complex interactions involving genetic susceptibility and environmental factors are thought to underlie the pathogenesis of Parkinson's disease (PD). Although the role of inflammatory processes in modulating risk for development of PD has yet to be fully understood, prospective studies suggest that chronic use of NSAIDs reduce the incidence of PD. Loss-of-function mutations in the DJ-1 gene cause a rare form of familial PD with an autosomal recessive pattern of inheritance; however, DJ-1-/- mice do not display nigrostriatal pathway degeneration, suggesting that additional factors such as inflammation may be needed to induce neurodegeneration on the background of DJ-1 gene mutations. Neuroinflammation causes oxidative stress and, based on evidence that DJ-1 plays a protective role against oxidative stress, we investigated whether DJ-1-/- mice display increased vulnerability to inflammation-induced nigral degeneration. METHODS: We exposed adult wild-type and DJ-1-/- mice to repeated intranasal administration of soluble TNF (inTNF) or repeated intraperitoneal injections of low-dose lipopolysaccharide (LPS) or saline vehicle. We measured locomotor performance using a variety of behavior tasks, striatal dopamine (DA) content by HPLC, DA neuron (TH+ cells) and total neuron (NeuN+ cells) number in the substantia nigra pars compacta and ventral tegmental area by unbiased stereology, number of Iba1-positive microglia, and mRNA levels of inflammatory and oxidative stress genes by quantitative PCR in the midbrain, cortex and isolated peritoneal macrophages of DJ-1-/- and wild-type mice. RESULTS: We found that chronic LPS injections induced similar neuroinflammatory responses in the midbrains of DJ-1-/- mice and wild-type mice and neither group developed locomotor deficits or nigral degeneration. inTNF administration did not appear to induce neuroinflammatory responses in LPS-treated wild-type or DJ-1-/- mice. The lack of vulnerability to inflammation-induced nigral degeneration was not due to enhanced anti-oxidant gene responses in the midbrains of DJ-1-/- mice which, in fact, displayed a blunted response relative to that of wild-type mice. Peripheral macrophages from wild-type and DJ-1-/- mice displayed similar basal and LPS-induced inflammatory and oxidative stress markers in vitro. CONCLUSIONS: Our studies indicate that DJ-1-/- mice do not display increased vulnerability to inflammation-related nigral degeneration in contrast to what has been reported for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine. We conclude that either DJ-1 does not have a critical role in protecting DA neurons against inflammation-induced oxidative stress and/or there is compensatory gene expression in the midbrain of DJ-1-/- mice that renders them resistant to the cytotoxic effects triggered by chronic peripheral inflammation.


Asunto(s)
Inflamación/patología , Actividad Motora/fisiología , Degeneración Nerviosa/patología , Proteínas Oncogénicas/fisiología , Sustancia Negra/patología , Administración Intranasal , Animales , Conducta Animal/efectos de los fármacos , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Inmunohistoquímica , Inflamación/inducido químicamente , Inyecciones Intraperitoneales , Lipopolisacáridos/farmacología , Macrófagos Peritoneales/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Proteínas Oncogénicas/genética , Estrés Oxidativo/fisiología , Peroxirredoxinas , Equilibrio Postural/efectos de los fármacos , Proteína Desglicasa DJ-1 , Desempeño Psicomotor/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Necrosis Tumoral alfa/administración & dosificación , Factor de Necrosis Tumoral alfa/farmacología , Tirosina 3-Monooxigenasa/metabolismo
3.
J Biol Chem ; 286(18): 16504-15, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21454572

RESUMEN

Neuroprotective strategies, including free radical scavengers, ion channel modulators, and anti-inflammatory agents, have been extensively explored in the last 2 decades for the treatment of neurological diseases. Unfortunately, none of the neuroprotectants has been proved effective in clinical trails. In the current study, we demonstrated that methylene blue (MB) functions as an alternative electron carrier, which accepts electrons from NADH and transfers them to cytochrome c and bypasses complex I/III blockage. A de novo synthesized MB derivative, with the redox center disabled by N-acetylation, had no effect on mitochondrial complex activities. MB increases cellular oxygen consumption rates and reduces anaerobic glycolysis in cultured neuronal cells. MB is protective against various insults in vitro at low nanomolar concentrations. Our data indicate that MB has a unique mechanism and is fundamentally different from traditional antioxidants. We examined the effects of MB in two animal models of neurological diseases. MB dramatically attenuates behavioral, neurochemical, and neuropathological impairment in a Parkinson disease model. Rotenone caused severe dopamine depletion in the striatum, which was almost completely rescued by MB. MB rescued the effects of rotenone on mitochondrial complex I-III inhibition and free radical overproduction. Rotenone induced a severe loss of nigral dopaminergic neurons, which was dramatically attenuated by MB. In addition, MB significantly reduced cerebral ischemia reperfusion damage in a transient focal cerebral ischemia model. The present study indicates that rerouting mitochondrial electron transfer by MB or similar molecules provides a novel strategy for neuroprotection against both chronic and acute neurological diseases involving mitochondrial dysfunction.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Azul de Metileno/farmacología , Mitocondrias/enzimología , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Animales , Línea Celular , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Glucólisis/efectos de los fármacos , Masculino , Neuronas/enzimología , Neuronas/patología , Consumo de Oxígeno/efectos de los fármacos , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/enzimología , Enfermedad de Parkinson Secundaria/patología , Enfermedad de Parkinson Secundaria/fisiopatología , Ratas , Ratas Sprague-Dawley , Rotenona/efectos adversos , Rotenona/farmacología , Sustancia Negra/enzimología , Sustancia Negra/patología , Sustancia Negra/fisiopatología , Desacopladores/efectos adversos , Desacopladores/farmacología
4.
J Neurochem ; 123(1): 124-34, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22757753

RESUMEN

Mice with a mutation in the Clock gene (ClockΔ19) have a number of behavioral phenotypes that suggest alterations in dopaminergic transmission. These include hyperactivity, increased exploratory behavior, and increased reward value for drugs of abuse. However, the complex changes in dopaminergic transmission that underlie the behavioral abnormalities in these mice remain unclear. Here we find that a loss of CLOCK function increases dopamine release and turnover in striatum as indicated by increased levels of metabolites HVA and DOPAC, and enhances sensitivity to dopamine receptor antagonists. Interestingly, this enlarged dopaminergic tone results in downstream changes in dopamine receptor (DR) levels with a surprising augmentation of both D1- and D2-type DR protein, but a significant shift in the ratio of D1 : D2 receptors in favor of D2 receptor signaling. These effects have functional consequences for both behavior and intracellular signaling, with alterations in locomotor responses to both D1-type and D2-type specific agonists and a blunted response to cAMP activation in the ClockΔ19 mutants. Taken together, these studies further elucidate the abnormalities in dopaminergic transmission that underlie mood, activity, and addictive behaviors.


Asunto(s)
Proteínas CLOCK/genética , Regulación de la Expresión Génica/genética , Mutación/genética , Receptores Dopaminérgicos/fisiología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Análisis de Varianza , Animales , Colforsina/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Homovanílico/metabolismo , Técnicas In Vitro , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
5.
J Neurosci ; 28(43): 10825-34, 2008 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-18945890

RESUMEN

The loss of nigral dopaminergic (DA) neurons in idiopathic Parkinson's disease (PD) is believed to result from interactions between genetic susceptibility and environmental factors. Evidence that inflammatory processes modulate PD risk comes from prospective studies that suggest that higher plasma concentrations of a number of proinflammatory cytokines correlate with an increased risk of developing PD and chronic nonsteroidal anti-inflammatory drug regimens reduce the incidence of PD. Although loss-of-function mutations in the parkin gene cause early-onset familial PD, Parkin-deficient (parkin-/-) mice do not display nigrostriatal pathway degeneration, suggesting that a genetic factor is not sufficient, and an environmental trigger may be needed to cause nigral DA neuron loss. To test the hypothesis that parkin-/- mice require an inflammatory stimulus to develop nigral DA neuron loss, low-dose lipopolysaccaride (LPS) was administered intraperitoneally for prolonged periods. Quantitative real-time PCR and immunofluorescence labeling of inflammatory markers indicated that this systemic LPS treatment regimen triggered persistent neuroinflammation in wild-type and parkin-/- mice. Although inflammatory and oxidative stress responses to the inflammation regimen did not differ significantly between the two genotypes, only parkin-/- mice displayed subtle fine-motor deficits and selective loss of DA neurons in substantia nigra. Therefore, our studies suggest that loss of Parkin function increases the vulnerability of nigral DA neurons to inflammation-related degeneration. This new model of nigral DA neuron loss may enable identification of early biomarkers of degeneration and aid in preclinical screening efforts to identify compounds that can halt or delay the progressive degeneration of the nigrostriatal pathway.


Asunto(s)
Inflamación/complicaciones , Degeneración Nerviosa/etiología , Sustancia Negra/patología , Ubiquitina-Proteína Ligasas/deficiencia , Animales , Conducta Animal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Dopamina/metabolismo , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/genética , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Inflamación/inducido químicamente , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Análisis Multivariante , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Degeneración Nerviosa/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Polisacáridos , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Sustancia Negra/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Tirosina 3-Monooxigenasa
6.
PLoS One ; 8(12): e84894, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386432

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by loss of neurons in the substantia nigra that project to the striatum and release dopamine. The cause of PD remains uncertain, however, evidence implicates mitochondrial dysfunction and oxidative stress. Although most cases of PD are sporadic, 5-10% of cases are caused by inherited mutations. Loss-of-function mutations in Parkin and DJ-1 were the first to be linked to recessively inherited Parkinsonism. Surprisingly, mice bearing similar loss-of-function mutations in Parkin and DJ-1 do not show age-dependent loss of nigral dopaminergic neurons or depletion of dopamine in the striatum. Although the normal cellular functions of Parkin and DJ-1 are not fully understood, we hypothesized that loss-of-function mutations in Parkin and DJ-1 render cells more sensitive to mitochondrial dysfunction and oxidative stress. To test this hypothesis, we crossed mice deficient for Parkin and DJ-1 with mice deficient for the mitochondrial antioxidant protein Mn-superoxide dismutase (SOD2) or the cytosolic antioxidant protein Cu-Zn-superoxide dismutase (SOD1). Aged Parkin -/-) DJ-1(-/-) and Mn-superoxide dismutase triple deficient mice have enhanced performance on the rotorod behavior test. Cu/Zn-superoxide dismutase triple deficient mice have elevated levels of dopamine in the striatum in the absence of nigral cell loss. Our studies demonstrate that on a Parkin/DJ-1 null background, mice that are also deficient for major antioxidant proteins do not have progressive loss of dopaminergic neurons but have behavioral and striatal dopamine abnormalities.


Asunto(s)
Conducta Animal , Dopamina/metabolismo , Proteínas Oncogénicas/deficiencia , Superóxido Dismutasa/deficiencia , Ubiquitina-Proteína Ligasas/deficiencia , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Cruzamientos Genéticos , Dopamina/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Ratones , Ratones Noqueados , Estrés Oxidativo/genética , Peroxirredoxinas , Proteína Desglicasa DJ-1 , Sustancia Negra/metabolismo , Sustancia Negra/patología , Superóxido Dismutasa-1
7.
Neuropsychopharmacology ; 36(7): 1478-88, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21430648

RESUMEN

Lithium has been used extensively for mood stabilization, and it is particularly efficacious in the treatment of bipolar mania. Like other drugs used in the treatment of psychiatric diseases, it has little effect on the mood of healthy individuals. Our previous studies found that mice with a mutation in the Clock gene (ClockΔ19) have a complete behavioral profile that is very similar to human mania, which can be reversed with chronic lithium treatment. However, the cellular and physiological effects that underlie its targeted therapeutic efficacy remain unknown. Here we find that ClockΔ19 mice have an increase in dopaminergic activity in the ventral tegmental area (VTA), and that lithium treatment selectively reduces the firing rate in the mutant mice with no effect on activity in wild-type mice. Furthermore, lithium treatment reduces nucleus accumbens (NAc) dopamine levels selectively in the mutant mice. The increased dopaminergic activity in the Clock mutants is associated with cell volume changes in dopamine neurons, which are also rescued by lithium treatment. To determine the role of dopaminergic activity and morphological changes in dopamine neurons in manic-like behavior, we manipulated the excitability of these neurons by overexpressing an inwardly rectifying potassium channel subunit (Kir2.1) selectively in the VTA of ClockΔ19 mice and wild-type mice using viral-mediated gene transfer. Introduction of this channel mimics the effects of lithium treatment on the firing rate of dopamine neurons in ClockΔ19 mice and leads to a similar change in dopamine cell volume. Furthermore, reduction of dopaminergic firing rates in ClockΔ19 animals results in a normalization of locomotor- and anxiety-related behavior that is very similar to lithium treatment; however, it is not sufficient to reverse depression-related behavior. These results suggest that abnormalities in dopamine cell firing and associated morphology underlie alterations in anxiety-related behavior in bipolar mania, and that the therapeutic effects of lithium come from a reversal of these abnormal phenotypes.


Asunto(s)
Potenciales de Acción/genética , Trastorno Bipolar/genética , Trastorno Bipolar/patología , Proteínas CLOCK/genética , Dopamina/metabolismo , Mutación/genética , Neuronas/fisiología , Área Tegmental Ventral/patología , Potenciales de Acción/efectos de los fármacos , Análisis de Varianza , Animales , Ansiedad/genética , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/fisiopatología , Recuento de Células , Cromatografía Líquida de Alta Presión , Adaptación a la Oscuridad/efectos de los fármacos , Adaptación a la Oscuridad/genética , Depresión/genética , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Desamparo Adquirido , Histonas/metabolismo , Técnicas In Vitro , Cloruro de Litio/uso terapéutico , Locomoción/efectos de los fármacos , Locomoción/genética , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Natación/psicología , Tirosina 3-Monooxigenasa/metabolismo
8.
Biol Psychiatry ; 68(12): 1163-71, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20832057

RESUMEN

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) may result from delayed establishment of corticolimbic circuitry or perturbed dopamine (DA) neurotransmission. Despite the widespread use of stimulants to treat ADHD, little is known regarding their long-term effects on neurotransmitter levels and metabolism. Cyclin-dependent kinase 5 (Cdk5) regulates DA signaling through control of synthesis, postsynaptic responses, and vesicle release. Mice lacking the Cdk5-activating cofactor p35 are deficient in cortical lamination, suggesting altered motor/reward circuitry. METHODS: We employed mice lacking p35 to study the effect of altered circuitry in vivo. Positron emission tomography measured glucose metabolism in the cerebral cortex using 2-deoxy-2-[¹8F] fluoro-d-glucose as the radiotracer. Retrograde dye tracing and tyrosine hydroxylase immunostains assessed the effect of p35 knockout on the medial prefrontal cortex (PFC), especially in relation to mesolimbic circuit formation. We defined the influence of Cdk5/p35 activity on catecholaminergic neurotransmission and motor activity via examination of locomotor responses to psychostimulants, monoamine neurotransmitter levels, and DA signal transduction. RESULTS: Here, we report that mice deficient in p35 display increased glucose uptake in the cerebral cortex, basal hyperactivity, and paradoxical decreased locomotion in response to chronic injection of cocaine or methylphenidate. Knockout mice also exhibited an increased susceptibility to changes in PFC neurotransmitter content after chronic methylphenidate exposure and altered basal DAergic activity in acute striatal and PFC slices. CONCLUSIONS: Our findings suggest that dysregulation of Cdk5/p35 activity during development may contribute to ADHD pathology, as indicated by the behavioral phenotype, improperly established mesolimbic circuitry, and aberrations in striatal and PFC catecholaminergic signaling in p35 knockout mice.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Encéfalo/metabolismo , Encéfalo/patología , Fosfotransferasas/genética , Animales , Atrofia/genética , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Trastorno por Déficit de Atención con Hiperactividad/patología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Masculino , Metilfenidato/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Vías Nerviosas/patología , Fenotipo , Tomografía de Emisión de Positrones/métodos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Receptores AMPA/metabolismo , Serotonina/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA