RESUMEN
Loss of skeletal integrity during ageing and disease is associated with an imbalance in the opposing actions of osteoblasts and osteoclasts1. Here we show that intrinsic ageing of skeletal stem cells (SSCs)2 in mice alters signalling in the bone marrow niche and skews the differentiation of bone and blood lineages, leading to fragile bones that regenerate poorly. Functionally, aged SSCs have a decreased bone- and cartilage-forming potential but produce more stromal lineages that express high levels of pro-inflammatory and pro-resorptive cytokines. Single-cell RNA-sequencing studies link the functional loss to a diminished transcriptomic diversity of SSCs in aged mice, which thereby contributes to the transformation of the bone marrow niche. Exposure to a youthful circulation through heterochronic parabiosis or systemic reconstitution with young haematopoietic stem cells did not reverse the diminished osteochondrogenic activity of aged SSCs, or improve bone mass or skeletal healing parameters in aged mice. Conversely, the aged SSC lineage promoted osteoclastic activity and myeloid skewing by haematopoietic stem and progenitor cells, suggesting that the ageing of SSCs is a driver of haematopoietic ageing. Deficient bone regeneration in aged mice could only be returned to youthful levels by applying a combinatorial treatment of BMP2 and a CSF1 antagonist locally to fractures, which reactivated aged SSCs and simultaneously ablated the inflammatory, pro-osteoclastic milieu. Our findings provide mechanistic insights into the complex, multifactorial mechanisms that underlie skeletal ageing and offer prospects for rejuvenating the aged skeletal system.
Asunto(s)
Envejecimiento/patología , Huesos/patología , Senescencia Celular , Inflamación/patología , Nicho de Células Madre , Células Madre/patología , Animales , Proteína Morfogenética Ósea 2/metabolismo , Regeneración Ósea , Linaje de la Célula , Femenino , Curación de Fractura , Hematopoyesis , Factor Estimulante de Colonias de Macrófagos/metabolismo , Masculino , Ratones , Células Mieloides/citología , Osteoclastos/citología , RejuvenecimientoRESUMEN
In the skin, tissue injury results in fibrosis in the form of scars composed of dense extracellular matrix deposited by fibroblasts. The therapeutic goal of regenerative wound healing has remained elusive, in part because principles of fibroblast programming and adaptive response to injury remain incompletely understood. Here, we present a multimodal -omics platform for the comprehensive study of cell populations in complex tissue, which has allowed us to characterize the cells involved in wound healing across both time and space. We employ a stented wound model that recapitulates human tissue repair kinetics and multiple Rainbow transgenic lines to precisely track fibroblast fate during the physiologic response to skin injury. Through integrated analysis of single cell chromatin landscapes and gene expression states, coupled with spatial transcriptomic profiling, we are able to impute fibroblast epigenomes with temporospatial resolution. This has allowed us to reveal potential mechanisms controlling fibroblast fate during migration, proliferation, and differentiation following skin injury, and thereby reexamine the canonical phases of wound healing. These findings have broad implications for the study of tissue repair in complex organ systems.
Asunto(s)
Cicatriz/patología , Fibroblastos/metabolismo , Fibrosis/patología , Piel/lesiones , Cicatrización de Heridas/fisiología , Animales , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Matriz Extracelular/metabolismo , Femenino , Mecanotransducción Celular/fisiología , Ratones , Ratones Endogámicos C57BL , Piel/metabolismoRESUMEN
Myeloid cells are critical to the development of fibrosis following muscle injury; however, the mechanism of their role in fibrosis formation remains unclear. In this study, we demonstrate that myeloid cell-derived TGF-ß1 signaling is increased in a profibrotic ischemia reperfusion and cardiotoxin muscle injury model. We found that myeloid-specific deletion of Tgfb1 abrogates the fibrotic response in this injury model and reduces fibro/adipogenic progenitor cell proliferation while simultaneously enhancing muscle regeneration, which is abrogated by adaptive transfer of normal macrophages. Similarly, a murine TGFBRII-Fc ligand trap administered after injury significantly reduced muscle fibrosis and improved muscle regeneration. This study ultimately demonstrates that infiltrating myeloid cell TGF-ß1 is responsible for the development of traumatic muscle fibrosis, and its blockade offers a promising therapeutic target for preventing muscle fibrosis after ischemic injury.
Asunto(s)
Fibrosis/inmunología , Fibrosis/patología , Macrófagos/inmunología , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Células Mieloides/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Animales , Cardiotoxinas , Fibrosis/complicaciones , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/patología , Fenotipo , Daño por Reperfusión/inducido químicamente , Daño por Reperfusión/complicaciones , Daño por Reperfusión/inmunologíaRESUMEN
The iron chelator, deferoxamine (DFO), has been shown to potentially improve dermal radiation-induced fibrosis (RIF) in mice through increased angiogenesis and reduced oxidative damage. This preclinical study evaluated the efficacy of two DFO administration modalities, transdermal delivery and direct injection, as well as temporal treatment strategies in relation to radiation therapy to address collateral soft tissue fibrosis. The dorsum of CD-1 nude mice received 30 Gy radiation, and DFO (3 mg) was administered daily via patch or injection. Treatment regimens were prophylactic, during acute recovery, post-recovery, or continuously throughout the experiment (n = 5 per condition). Measures included ROS-detection, histology, biomechanics and vascularity changes. Compared with irradiated control skin, DFO treatment decreased oxidative damage, dermal thickness and collagen content, and increased skin elasticity and vascularity. Metrics of improvement in irradiated skin were most pronounced with continuous transdermal delivery of DFO. In summary, DFO administration reduces dermal fibrosis induced by radiation. Although both treatment modalities were efficacious, the transdermal delivery showed greater effect than injection for each temporal treatment strategy. Interestingly, the continuous patch group was more similar to normal skin than to irradiated control skin by most measures, highlighting a promising approach to address detrimental collateral soft tissue injury following radiation therapy.
Asunto(s)
Deferoxamina/farmacología , Dermis/metabolismo , Dermis/patología , Dermis/efectos de la radiación , Radiación Ionizante , Animales , Biomarcadores , Dermis/irrigación sanguínea , Susceptibilidad a Enfermedades , Femenino , Fibrosis , Ratones , Microvasos/diagnóstico por imagen , Microvasos/metabolismo , Estrés Oxidativo , Síndrome de Fibrosis por Radiación/etiología , Síndrome de Fibrosis por Radiación/metabolismo , Síndrome de Fibrosis por Radiación/patología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
The aim of this study was to explore the therapeutic effects of fat grafting on radiation-induced hind limb contracture. Radiation therapy (RT) is used to palliate and/or cure a range of malignancies but causes inevitable and progressive fibrosis of surrounding soft tissue. Pathological fibrosis may lead to painful contractures which limit movement and negatively impact quality of life. Fat grafting is able to reduce and/or reverse radiation-induced soft tissue fibrosis. We explored whether fat grafting could improve extensibility in irradiated and contracted hind limbs of mice. Right hind limbs of female 60-day-old CD-1 nude mice were irradiated. Chronic skin fibrosis and limb contracture developed. After 4 weeks, irradiated hind limbs were then injected with (a) fat enriched with stromal vascular cells (SVCs), (b) fat only, (c) saline, or (d) nothing (n = 10/group). Limb extension was measured at baseline and every 2 weeks for 12 weeks. Hind limb skin then underwent histological analysis and biomechanical strength testing. Irradiation significantly reduced limb extension but was progressively rescued by fat grafting. Fat grafting also reduced skin stiffness and reversed the radiation-induced histological changes in the skin. The greatest benefits were found in mice injected with fat enriched with SVCs. Hind limb radiation induces contracture in our mouse model which can be improved with fat grafting. Enriching fat with SVCs enhances these beneficial effects. These results underscore an attractive approach to address challenging soft tissue fibrosis in patients following RT.
Asunto(s)
Tejido Adiposo/trasplante , Contractura/etiología , Miembro Posterior/patología , Traumatismos Experimentales por Radiación/terapia , Animales , Femenino , Humanos , Ratones , Ratones DesnudosRESUMEN
OBJECTIVE: To investigate the effects of local doxycycline administration on skin scarring. BACKGROUND: Skin scarring represents a major source of morbidity for surgical patients. Doxycycline, a tetracycline antibiotic with off-target effects on the extracellular matrix, has demonstrated antifibrotic effects in multiple organs. However, doxycycline's potential effects on skin scarring have not been explored in vivo. METHODS: Female C57BL/6J mice underwent dorsal wounding following an established splinted excisional skin wounding model. Doxycycline was administered by local injection into the wound base following injury. Wounds were harvested upon complete wound closure (postoperative day 15) for histological examination and biomechanical testing of scar tissue. RESULTS: A one-time dose of 3.90âmM doxycycline (2âmg/mL) within 12 hours of injury was found to significantly reduce scar thickness by 24.8% (P < 0.0001) without compromising tensile strength. The same effect could not be achieved by oral dosing. In doxycycline-treated scar matrices, collagen I content was significantly reduced (P = 0.0317) and fibers were favorably arranged with significantly increased fiber randomness (P = 0.0115). Common culprits of altered wound healing mechanics, including angiogenesis and inflammation, were not impacted by doxycycline treatment. However, engrailed1 profibrotic fibroblasts, responsible for scar extracellular matrix deposition, were significantly reduced with doxycycline treatment (P = 0.0005). CONCLUSIONS: Due to the substantial improvement in skin scarring and well-established clinical safety profile, locally administered doxycycline represents a promising vulnerary agent. As such, we favor rapid translation to human patients as an antiscarring therapy.
Asunto(s)
Cicatriz/prevención & control , Colágeno/efectos de los fármacos , Doxiciclina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Doxiciclina/administración & dosificación , Femenino , Inyecciones Intralesiones , Ratones , Ratones Endogámicos C57BL , Resistencia a la TracciónRESUMEN
CRISPR germline editing therapies (CGETs) hold unprecedented potential to eradicate hereditary disorders. However, the prospect of altering the human germline has sparked a debate over the safety, efficacy, and morality of CGETs, triggering a funding moratorium by the NIH. There is an urgent need for practical paths for the evaluation of these capabilities. We propose a model regulatory framework for CGET research, clinical development, and distribution. Our model takes advantage of existing legal and regulatory institutions but adds elevated scrutiny at each stage of CGET development to accommodate the unique technical and ethical challenges posed by germline editing.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/prevención & control , Ingeniería Genética/legislación & jurisprudencia , Investigación Genética/legislación & jurisprudencia , Mutación de Línea Germinal , Diagnóstico Prenatal , Política Pública , Enfermedades Genéticas Congénitas/diagnóstico , Ingeniería Genética/ética , Investigación Genética/ética , Guías como Asunto , Humanos , Diagnóstico Prenatal/ética , Diagnóstico Prenatal/métodos , Diagnóstico Prenatal/tendencias , Política Pública/legislación & jurisprudencia , Política Pública/tendencias , Estados UnidosRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) represents one of the only cancers with an increasing incidence rate and is often associated with intra- and peri-tumoral scarring, referred to as desmoplasia. This scarring is highly heterogeneous in extracellular matrix (ECM) architecture and plays complex roles in both tumor biology and clinical outcomes that are not yet fully understood. Using hematoxylin and eosin (H&E), a routine histological stain utilized in existing clinical workflows, we quantified ECM architecture in 85 patient samples to assess relationships between desmoplastic architecture and clinical outcomes such as survival time and disease recurrence. By utilizing unsupervised machine learning to summarize a latent space across 147 local (e.g., fiber length, solidity) and global (e.g., fiber branching, porosity) H&E-based features, we identified a continuum of histological architectures that were associated with differences in both survival and recurrence. Furthermore, we mapped H&E architectures to a CO-Detection by indEXing (CODEX) reference atlas, revealing localized cell- and protein-based niches associated with outcome-positive versus outcome-negative scarring in the tumor microenvironment. Overall, our study utilizes standard H&E staining to uncover clinically relevant associations between desmoplastic organization and PDAC outcomes, offering a translatable pipeline to support prognostic decision-making and a blueprint of spatial-biological factors for modeling by tissue engineering methods.
Asunto(s)
Eosina Amarillenta-(YS) , Hematoxilina , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Eosina Amarillenta-(YS)/química , Femenino , Masculino , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral , Persona de Mediana Edad , Anciano , Matriz Extracelular/metabolismoRESUMEN
Skin fibrosis is a clinical problem with devastating impacts but limited treatment options. In the setting of diabetes, insulin administration often causes local dermal fibrosis, leading to a range of clinical sequelae including impeded insulin absorption. Mechanical forces are important drivers of fibrosis and, clinically, physical tension offloading at the skin level using an elastomeric patch significantly reduces wound scarring. However, it is not known whether tension offloading could similarly prevent skin fibrosis in the setting of pro-fibrotic injections. Here, we develop a porcine model using repeated local injections of bleomycin to recapitulate key features of insulin-induced skin fibrosis. Using histologic, tissue ultrastructural, and biomechanical analyses, we show that application of a tension-offloading patch both prevents and rescues existing skin fibrosis from bleomycin injections. By applying single-cell transcriptomic analysis, we find that the fibrotic response to bleomycin involves shifts in myeloid cell dynamics from favoring putatively pro-regenerative to pro-fibrotic myeloid subtypes; in a mechanomodulatory in vitro platform, we show that these shifts are mechanically driven and reversed by exogenous IL4. Finally, using a human foreskin xenograft model, we show that IL4 treatment mitigates bleomycin-induced dermal fibrosis. Overall, this study highlights that skin tension offloading, using an FDA cleared, commercially available patch, could have significant potential clinical benefit for the millions of patients dependent on insulin.
RESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second leading cause of cancer-related death. Hallmarks include desmoplasia with variable extracellular matrix (ECM) architecture and a complex microenvironment with spatially defined tumor, stromal, and immune populations. Nevertheless, the role of desmoplastic spatial organization in patient/tumor variability remains underexplored, which we elucidate using two technologies. First, we quantify ECM patterning in 437 patients, revealing architectures associated with disease-free and overall survival. Second, we spatially profile the cellular milieu of 78 specimens using codetection by indexing, identifying an axis of pro-inflammatory cell interactions predictive of poorer outcomes. We discover that clinical characteristics, including neoadjuvant chemotherapy status, tumor stage, and ECM architecture, correlate with differential stromal-immune organization, including fibroblast subtypes with distinct niches. Lastly, we define unified signatures that predict survival with areas under the receiver operating characteristic curve (AUCs) of 0.872-0.903, differentiating survivorship by 655 days. Overall, our findings establish matrix ultrastructural and cellular organizations of fibrosis linked to poorer outcomes.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Matriz Extracelular/patología , Microambiente TumoralRESUMEN
Despite its rapidly increased availability for the study of complex tissue, single-cell RNA sequencing remains prohibitively expensive for large studies. Here, we present a protocol using oligonucleotide barcoding for the tagging and pooling of multiple samples from healing wounds, which are among the most challenging tissue types for this application. We describe steps to generate skin wounds in mice, followed by tissue harvest and oligonucleotide barcoding. This protocol is also applicable to other species including rats, pigs, and humans. For complete details on the use and execution of this protocol, please refer to Stoeckius et al. (2018),1 Galiano et al. (2004),2 and Mascharak et al. (2022).3.
Asunto(s)
Oligonucleótidos , Neoplasias Cutáneas , Humanos , Ratones , Ratas , Animales , Porcinos , Cicatrización de Heridas/genética , Análisis de Secuencia de ARNRESUMEN
In adult mammals, skin wounds typically heal by scarring rather than through regeneration. In contrast, "super-healer" Murphy Roths Large (MRL) mice have the unusual ability to regenerate ear punch wounds; however, the molecular basis for this regeneration remains elusive. Here, in hybrid crosses between MRL and non-regenerating mice, we used allele-specific gene expression to identify cis-regulatory variation associated with ear regeneration. Analyzing three major cell populations (immune, fibroblast, and endothelial), we found that genes with cis-regulatory differences specifically in fibroblasts were associated with wound-healing pathways and also co-localized with quantitative trait loci for ear wound-healing. Ectopic treatment with one of these proteins, complement factor H (CFH), accelerated wound repair and induced regeneration in typically fibrotic wounds. Through single-cell RNA sequencing (RNA-seq), we observed that CFH treatment dramatically reduced immune cell recruitment to wounds, suggesting a potential mechanism for CFH's effect. Overall, our results provide insights into the molecular drivers of regeneration with potential clinical implications.
Asunto(s)
Oído , Cicatrización de Heridas , Ratones , Animales , Alelos , Oído/lesiones , Oído/patología , Cicatrización de Heridas/genética , Cicatriz/patología , Ratones Endogámicos , MamíferosRESUMEN
While past studies have suggested that plasticity exists between dermal fibroblasts and adipocytes, it remains unknown whether fat actively contributes to fibrosis in scarring. We show that adipocytes convert to scar-forming fibroblasts in response to Piezo -mediated mechanosensing to drive wound fibrosis. We establish that mechanics alone are sufficient to drive adipocyte-to- fibroblast conversion. By leveraging clonal-lineage-tracing in combination with scRNA-seq, Visium, and CODEX, we define a "mechanically naïve" fibroblast-subpopulation that represents a transcriptionally intermediate state between adipocytes and scar-fibroblasts. Finally, we show that Piezo1 or Piezo2 -inhibition yields regenerative healing by preventing adipocytes' activation to fibroblasts, in both mouse-wounds and a novel human-xenograft-wound model. Importantly, Piezo1 -inhibition induced wound regeneration even in pre-existing established scars, a finding that suggests a role for adipocyte-to-fibroblast transition in wound remodeling, the least-understood phase of wound healing. Adipocyte-to-fibroblast transition may thus represent a therapeutic target for minimizing fibrosis via Piezo -inhibition in organs where fat contributes to fibrosis.
RESUMEN
Fibroblasts are highly dynamic cells that play a central role in tissue repair and fibrosis. However, the mechanisms by which they contribute to both physiologic and pathologic states of extracellular matrix deposition and remodeling are just starting to be understood. In this review article, we discuss the current state of knowledge in fibroblast biology and heterogeneity, with a primary focus on the role of fibroblasts in skin wound repair. We also consider emerging techniques in the field, which enable an increasingly nuanced and contextualized understanding of these complex systems, and evaluate limitations of existing methodologies and knowledge. Collectively, this review spotlights a diverse body of research examining an often-overlooked cell type-the fibroblast-and its critical functions in wound repair and beyond.
Asunto(s)
Fibroblastos , Cicatrización de Heridas , Matriz Extracelular/patología , Fibroblastos/patología , Fibrosis , Humanos , Piel/patología , Cicatrización de Heridas/fisiologíaRESUMEN
Significance: Skin scarring poses a major biomedical burden for hundreds of millions of patients annually. However, this burden could be mitigated by therapies that promote wound regeneration, with full recovery of skin's normal adnexa, matrix ultrastructure, and mechanical strength. Recent Advances: The observation of wound regeneration in several mouse models suggests a retained capacity for postnatal mammalian skin to regenerate under the right conditions. Mechanical forces are a major contributor to skin fibrosis and a prime target for devices and therapeutics that could promote skin regeneration. Critical Issues: Wound-induced hair neogenesis, Acomys "spiny" mice, Murphy Roths Large mice, and mice treated with mechanotransduction inhibitors all show various degrees of wound regeneration. Comparison of regenerating wounds in these models against scarring wounds reveals differences in extracellular matrix interactions and in mechanosensitive activation of key signaling pathways, including Wnt, Sonic hedgehog, focal adhesion kinase, and Yes-associated protein. The advent of single-cell "omics" technologies has deepened this understanding and revealed that regeneration may recapitulate development in certain contexts, although it is unknown whether these mechanisms are relevant to healing in tight-skinned animals such as humans. Future Directions: While early findings in mice are promising, comparison across model systems is needed to resolve conflicting mechanisms and to identify conserved master regulators of skin regeneration. There also remains a dire need for studies on mechanomodulation of wounds in large, tight-skinned animals, such as red Duroc pigs, which better approximate human wound healing.
Asunto(s)
Cicatriz , Mecanotransducción Celular , Animales , Cicatriz/patología , Proteínas Hedgehog , Humanos , Mamíferos , Regeneración/fisiología , Porcinos , Cicatrización de Heridas/fisiologíaRESUMEN
BACKGROUND: Striae distensae are common disfiguring cutaneous lesions but lack effective treatments because of an incomplete understanding of their pathophysiology. Dermal fibroblasts likely play an important role. The authors investigate the cellular-molecular features distinguishing fibroblasts from human striae distensae and normal skin. The authors also develop a mouse model of striae distensae. METHODS: Human striae distensae and normal skin samples were compared for tensile strength and histologic structure. Fibroblasts from striae distensae and normal skin were isolated by fluorescence-activated cell sorting for gene expression analysis. Immunofluorescence staining and fluorescence-activated cell sorting were used to confirm gene expression data at the protein level. A mouse model of striae distensae formation was created by administering corticosteroids and mechanically loading the dorsal skin. RESULTS: Human striae distensae exhibited reduced tensile strength, more disordered collagen fibers, and epidermal atrophy compared to human normal skin. There were 296 up-regulated genes in striae distensae fibroblasts, including the profibrotic lineage and surface marker CD26. Up-regulated genes were involved in profibrotic and mechanoresponsive signaling pathways (TGFß and FAK-PI3-AKT-signaling). In contrast, 571 genes were down-regulated, including CD74 and genes of the AMPK pathway. Increased CD26 and decreased CD74 expression was confirmed by fluorescence-activated cell sorting and immunofluorescence. Similar cutaneous histologic and gene expression changes were induced in hypercortisolemic mice by mechanically loading the dorsal skin. CONCLUSIONS: Fibroblasts from human striae distensae exhibit increased profibrotic and decreased antifibrotic signaling. CD26 and CD74 are promising surface markers that may be targeted therapeutically. The authors' mouse model of striae distensae can be used as a platform to test the efficacy of potential therapeutic agents. CLINICAL RELEVANCE STATEMENT: Striae distensae are common disfiguring cutaneous lesions whose etiology remains elusive, which has hindered development of effective treatment strategies. Dermal fibroblasts likely play an important role. The authors sought to elucidate the key cellular-molecular pathways distinguishing fibroblasts in striae distensae from those in normal skin.
Asunto(s)
Estrías de Distensión , Animales , Dipeptidil Peptidasa 4 , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Humanos , Ratones , Transducción de Señal , Piel/patologíaRESUMEN
Objective: Xenografts of human skin in immunodeficient mice provide a means of assessing human skin physiology and its response to wounding. Approach: We describe a novel xenograft model using full-thickness human neonatal foreskin to examine human skin wound repair. Full-thickness 8 mm human neonatal foreskin biopsies were sutured into the dorsum of NOD scid gamma (NSG; NOD.Cg-Prkdc scidIl2rgtm1Wjl/SzJ) pups as subcutaneous grafts. At postnatal day 21 the subcutaneous grafts were exposed to cutaneous grafts. Following maturation of 2 months, xenografts were then wounded with 5 mm linear incisions and monitored until postwound day (PWD) 14 to study skin repair and fibrosis. To explore whether our model can be used to test the efficacy of topical therapies, wounded xenografts were injected with antifibrotic fibroblast growth factor 2 (FGF2) for the first four consecutive PWDs. Xenografts were harvested for analysis by histology and fluorescence-activated cell sorting (FACS). Results: Xenografts were successfully engrafted with evidence of mouse-human anastomoses and resembled native neonatal foreskin at the gross and microscopic level. Wounded xenografted skin scarred with human collagen and an expansion of CD26-positive human fibroblasts. Collagen scar was quantitated by neural network analysis, which revealed distinct clustering of collagen fiber networks from unwounded skin and wounded skin at PWD7 and PWD14. Collagen fiber networks within FGF2-treated wounds at PWD14 resembled those in untreated wounded xenografts at PWD7, suggesting that FGF2 treatment at time of wounding can reduce fibrosis. Innovation and Conclusion: This novel xenograft model can be used to investigate acute fibrosis, fibroblast heterogeneity, and the efficacy of antifibrotic agents during wound repair in human skin.
Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Traumatismos de los Tejidos Blandos , Animales , Cicatriz , Colágeno , Modelos Animales de Enfermedad , Fibroblastos , Fibrosis , Xenoinjertos , Humanos , Ratones , Ratones SCIDRESUMEN
Regeneration is the holy grail of tissue repair, but skin injury typically yields fibrotic, non-functional scars. Developing pro-regenerative therapies requires rigorous understanding of the molecular progression from injury to fibrosis or regeneration. Here, we report the divergent molecular events driving skin wound cells toward scarring or regenerative fates. We profile scarring versus YAP-inhibition-induced wound regeneration at the transcriptional (single-cell RNA sequencing), protein (timsTOF proteomics), and tissue (extracellular matrix ultrastructural analysis) levels. Using cell-surface barcoding, we integrate these data to reveal fibrotic and regenerative "molecular trajectories" of healing. We show that disrupting YAP mechanotransduction yields regenerative repair by fibroblasts with activated Trps1 and Wnt signaling. Finally, via in vivo gene knockdown and overexpression in wounds, we identify Trps1 as a key regulatory gene that is necessary and partially sufficient for wound regeneration. Our findings serve as a multi-omic map of wound regeneration and could have therapeutic implications for pathologic fibroses.
Asunto(s)
Cicatriz , Cicatrización de Heridas , Animales , Cicatriz/patología , Fibroblastos/metabolismo , Fibrosis , Mecanotransducción Celular , Ratones , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Piel/patología , Cicatrización de Heridas/genéticaRESUMEN
Objective: Radiation therapy is commonplace for cancer treatment but often results in fibrosis and atrophy of surrounding soft tissue. Decellularized adipose matrices (DAMs) have been reported to improve these soft tissue defects through the promotion of adipogenesis. These matrices are decellularized by a combination of physical, chemical, and enzymatic methods to minimize their immunologic effects while promoting their regenerative effects. In this study, we aimed at exploring the regenerative ability of a DAM (renuva®; MTF biologics, Edison, NJ) in radiation-induced soft tissue injury. Approach: Fresh human lipoaspirate or DAM was injected into the irradiated scalp of CD-1 nude mice, and volume retention was monitored radiographically over 8 weeks. Explanted grafts were histologically assessed, and overlying skin was examined histologically and biomechanically. Irradiated human skin was also evaluated from patients after fat grafting or DAM injection. However, integrating data between murine and human skin in all cohorts is limited given the genetic variability between the two species. Results: Volume retention was found to be greater with fat grafts, though DAM retention was, nonetheless, appreciated at irradiated sites. Improvement in both mouse and human irradiated skin overlying fat and DAM grafts was observed in terms of biomechanical stiffness, dermal thickness, collagen density, collagen fiber networks, and skin vascularity. Innovation: This is the first demonstration of the use of DAMs for augmenting the regenerative potential of irradiated mouse and human skin. Conclusions: These findings support the use of DAMs to address soft tissue atrophy after radiation therapy. Morphological characteristics of the irradiated skin can also be improved with DAM grafting.