Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomed Semantics ; 15(1): 4, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664818

RESUMEN

BACKGROUND: Pathogenic parasites are responsible for multiple diseases, such as malaria and Chagas disease, in humans and livestock. Traditionally, pathogenic parasites have been largely an evasive topic for vaccine design, with most successful vaccines only emerging recently. To aid vaccine design, the VIOLIN vaccine knowledgebase has collected vaccines from all sources to serve as a comprehensive vaccine knowledgebase. VIOLIN utilizes the Vaccine Ontology (VO) to standardize the modeling of vaccine data. VO did not model complex life cycles as seen in parasites. With the inclusion of successful parasite vaccines, an update in parasite vaccine modeling was needed. RESULTS: VIOLIN was expanded to include 258 parasite vaccines against 23 protozoan species, and 607 new parasite vaccine-related terms were added to VO since 2022. The updated VO design for parasite vaccines accounts for parasite life stages and for transmission-blocking vaccines. A total of 356 terms from the Ontology of Parasite Lifecycle (OPL) were imported to VO to help represent the effect of different parasite life stages. A new VO class term, 'transmission-blocking vaccine,' was added to represent vaccines able to block infectious transmission, and one new VO object property, 'blocks transmission of pathogen via vaccine,' was added to link vaccine and pathogen in which the vaccine blocks the transmission of the pathogen. Additionally, our Gene Set Enrichment Analysis (GSEA) of 140 parasite antigens used in the parasitic vaccines identified enriched features. For example, significant patterns, such as signal, plasma membrane, and entry into host, were found in the antigens of the vaccines against two parasite species: Plasmodium falciparum and Toxoplasma gondii. The analysis found 18 out of the 140 parasite antigens involved with the malaria disease process. Moreover, a majority (15 out of 54) of P. falciparum parasite antigens are localized in the cell membrane. T. gondii antigens, in contrast, have a majority (19/24) of their proteins related to signaling pathways. The antigen-enriched patterns align with the life cycle stage patterns identified in our ontological parasite vaccine modeling. CONCLUSIONS: The updated VO modeling and GSEA analysis capture the influence of the complex parasite life cycles and their associated antigens on vaccine development.


Asunto(s)
Ontologías Biológicas , Animales , Parásitos/inmunología , Vacunas Antiprotozoos/inmunología , Humanos , Vacunas/inmunología , Modelos Biológicos
2.
J Biomed Semantics ; 15(1): 12, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38890666

RESUMEN

BACKGROUND: The exploration of cancer vaccines has yielded a multitude of studies, resulting in a diverse collection of information. The heterogeneity of cancer vaccine data significantly impedes effective integration and analysis. While CanVaxKB serves as a pioneering database for over 670 manually annotated cancer vaccines, it is important to distinguish that a database, on its own, does not offer the structured relationships and standardized definitions found in an ontology. Recognizing this, we expanded the Vaccine Ontology (VO) to include those cancer vaccines present in CanVaxKB that were not initially covered, enhancing VO's capacity to systematically define and interrelate cancer vaccines. RESULTS: An ontology design pattern (ODP) was first developed and applied to semantically represent various cancer vaccines, capturing their associated entities and relations. By applying the ODP, we generated a cancer vaccine template in a tabular format and converted it into the RDF/OWL format for generation of cancer vaccine terms in the VO. '12MP vaccine' was used as an example of cancer vaccines to demonstrate the application of the ODP. VO also reuses reference ontology terms to represent entities such as cancer diseases and vaccine hosts. Description Logic (DL) and SPARQL query scripts were developed and used to query for cancer vaccines based on different vaccine's features and to demonstrate the versatility of the VO representation. Additionally, ontological modeling was applied to illustrate cancer vaccine related concepts and studies for in-depth cancer vaccine analysis. A cancer vaccine-specific VO view, referred to as "CVO," was generated, and it contains 928 classes including 704 cancer vaccines. The CVO OWL file is publicly available on: http://purl.obolibrary.org/obo/vo/cvo.owl , for sharing and applications. CONCLUSION: To facilitate the standardization, integration, and analysis of cancer vaccine data, we expanded the Vaccine Ontology (VO) to systematically model and represent cancer vaccines. We also developed a pipeline to automate the inclusion of cancer vaccines and associated terms in the VO. This not only enriches the data's standardization and integration, but also leverages ontological modeling to deepen the analysis of cancer vaccine information, maximizing benefits for researchers and clinicians. AVAILABILITY: The VO-cancer GitHub website is: https://github.com/vaccineontology/VO/tree/master/CVO .


Asunto(s)
Ontologías Biológicas , Vacunas contra el Cáncer , Humanos , Análisis de Datos , Estándares de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA