Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 489(7415): 257-62, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22940863

RESUMEN

The skin interfollicular epidermis (IFE) is the first barrier against the external environment and its maintenance is critical for survival. Two seemingly opposite theories have been proposed to explain IFE homeostasis. One posits that IFE is maintained by long-lived slow-cycling stem cells that give rise to transit-amplifying cell progeny, whereas the other suggests that homeostasis is achieved by a single committed progenitor population that balances stochastic fate. Here we probe the cellular heterogeneity within the IFE using two different inducible Cre recombinase­oestrogen receptor constructs targeting IFE progenitors in mice. Quantitative analysis of clonal fate data and proliferation dynamics demonstrate the existence of two distinct proliferative cell compartments arranged in a hierarchy involving slow-cycling stem cells and committed progenitor cells. After wounding, only stem cells contribute substantially to the repair and long-term regeneration of the tissue, whereas committed progenitor cells make a limited contribution.


Asunto(s)
Células Epidérmicas , Células Madre/citología , Animales , Diferenciación Celular , División Celular , Linaje de la Célula , Supervivencia Celular , Células Clonales/citología , Células Clonales/metabolismo , Integrasas/genética , Integrasas/metabolismo , Queratina-14/genética , Ratones , Regiones Promotoras Genéticas/genética , Precursores de Proteínas/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Células Madre/metabolismo , Cola (estructura animal)/citología , Cicatrización de Heridas/fisiología
2.
Nature ; 478(7369): 399-403, 2011 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22012397

RESUMEN

Angiogenesis is critical during tumour initiation and malignant progression. Different strategies aimed at blocking vascular endothelial growth factor (VEGF) and its receptors have been developed to inhibit angiogenesis in cancer patients. It has become increasingly clear that in addition to its effect on angiogenesis, other mechanisms including a direct effect of VEGF on tumour cells may account for the efficiency of VEGF-blockade therapies. Cancer stem cells (CSCs) have been described in various cancers including squamous tumours of the skin. Here we use a mouse model of skin tumours to investigate the impact of the vascular niche and VEGF signalling on controlling the stemness (the ability to self renew and differentiate) of squamous skin tumours during the early stages of tumour progression. We show that CSCs of skin papillomas are localized in a perivascular niche, in the immediate vicinity of endothelial cells. Furthermore, blocking VEGFR2 caused tumour regression not only by decreasing the microvascular density, but also by reducing CSC pool size and impairing CSC renewal properties. Conditional deletion of Vegfa in tumour epithelial cells caused tumours to regress, whereas VEGF overexpression by tumour epithelial cells accelerated tumour growth. In addition to its well-known effect on angiogenesis, VEGF affected skin tumour growth by promoting cancer stemness and symmetric CSC division, leading to CSC expansion. Moreover, deletion of neuropilin-1 (Nrp1), a VEGF co-receptor expressed in cutaneous CSCs, blocked VEGF's ability to promote cancer stemness and renewal. Our results identify a dual role for tumour-cell-derived VEGF in promoting cancer stemness: by stimulating angiogenesis in a paracrine manner, VEGF creates a perivascular niche for CSCs, and by directly affecting CSCs through Nrp1 in an autocrine loop, VEGF stimulates cancer stemness and renewal. Finally, deletion of Nrp1 in normal epidermis prevents skin tumour initiation. These results may have important implications for the prevention and treatment of skin cancers.


Asunto(s)
Carcinoma de Células Escamosas/irrigación sanguínea , Carcinoma de Células Escamosas/patología , Neuropilina-1/metabolismo , Transducción de Señal , Neoplasias Cutáneas/irrigación sanguínea , Neoplasias Cutáneas/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/citología , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Ratones , Células Madre Neoplásicas , Neuropilina-1/genética , Factor A de Crecimiento Endotelial Vascular/genética
3.
Nat Commun ; 8: 14684, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28248284

RESUMEN

Wound healing is essential to repair the skin after injury. In the epidermis, distinct stem cells (SCs) populations contribute to wound healing. However, how SCs balance proliferation, differentiation and migration to repair a wound remains poorly understood. Here, we show the cellular and molecular mechanisms that regulate wound healing in mouse tail epidermis. Using a combination of proliferation kinetics experiments and molecular profiling, we identify the gene signatures associated with proliferation, differentiation and migration in different regions surrounding the wound. Functional experiments show that SC proliferation, migration and differentiation can be uncoupled during wound healing. Lineage tracing and quantitative clonal analysis reveal that, following wounding, progenitors divide more rapidly, but conserve their homoeostatic mode of division, leading to their rapid depletion, whereas SCs become active, giving rise to new progenitors that expand and repair the wound. These results have important implications for tissue regeneration, acute and chronic wound disorders.


Asunto(s)
Movimiento Celular , Epidermis/patología , Células Madre/citología , Cicatrización de Heridas , Animales , Polaridad Celular , Proliferación Celular , Forma de la Célula , Células Clonales , Folículo Piloso/patología , Ratones , Modelos Biológicos , Células Madre/metabolismo
4.
Nat Cell Biol ; 12(6): 572-82, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20473297

RESUMEN

Adult stem cells (SCs) are at high risk of accumulating deleterious mutations because they reside and self-renew in adult tissues for extended periods. Little is known about how adult SCs sense and respond to DNA damage within their natural niche. Here, using mouse epidermis as a model, we define the functional consequences and the molecular mechanisms by which adult SCs respond to DNA damage. We show that multipotent hair-follicle-bulge SCs have two important mechanisms for increasing their resistance to DNA-damage-induced cell death: higher expression of the anti-apoptotic gene Bcl-2 and transient stabilization of p53 after DNA damage in bulge SCs. The attenuated p53 activation is the consequence of a faster DNA repair activity, mediated by a higher non-homologous end joining (NHEJ) activity, induced by the key protein DNA-PK. Because NHEJ is an error-prone mechanism, this novel characteristic of adult SCs may have important implications in cancer development and ageing.


Asunto(s)
Reparación del ADN , Folículo Piloso/citología , Células Madre Multipotentes/citología , Células Madre Multipotentes/fisiología , Células Madre/metabolismo , Adulto , Envejecimiento , Animales , Fenómenos Bioquímicos , Muerte Celular , ADN/metabolismo , Daño del ADN , Epidermis/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/fisiología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Ratones SCID , Células Madre Multipotentes/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
5.
J Cell Biol ; 187(1): 91-100, 2009 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-19786578

RESUMEN

Merkel cells (MCs) are located in the touch-sensitive area of the epidermis and mediate mechanotransduction in the skin. Whether MCs originate from embryonic epidermal or neural crest progenitors has been a matter of intense controversy since their discovery >130 yr ago. In addition, how MCs are maintained during adulthood is currently unknown. In this study, using lineage-tracing experiments, we show that MCs arise through the differentiation of epidermal progenitors during embryonic development. In adults, MCs undergo slow turnover and are replaced by cells originating from epidermal stem cells, not through the proliferation of differentiated MCs. Conditional deletion of the Atoh1/Math1 transcription factor in epidermal progenitors results in the absence of MCs in all body locations, including the whisker region. Our study demonstrates that MCs arise from the epidermis by an Atoh1-dependent mechanism and opens new avenues for study of MC functions in sensory perception, neuroendocrine signaling, and MC carcinoma.


Asunto(s)
Células Epidérmicas , Homeostasis , Células de Merkel/citología , Células de Merkel/fisiología , Envejecimiento , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores/metabolismo , Cadherinas/metabolismo , Diferenciación Celular , Linaje de la Célula , Epidermis/metabolismo , Epidermis/ultraestructura , Técnica del Anticuerpo Fluorescente Directa , Inmunohistoquímica , Integrasas/genética , Integrasas/metabolismo , Células de Merkel/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Cresta Neural/citología , Cresta Neural/embriología , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Piel/citología , Piel/embriología , Piel/metabolismo , Piel/ultraestructura , Células Madre/citología , Factores de Tiempo , Vibrisas/citología , Vibrisas/embriología , Vibrisas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA