Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell Commun Signal ; 22(1): 344, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937789

RESUMEN

BACKGROUND: Tumor cells release extracellular vesicles (EVs) that contribute to the polarization of macrophages towards tumor-associated macrophages (TAMs). High expression levels of the RNA binding protein IGF2BP2/IMP2 are correlated with increased tumor cell proliferation, invasion, and poor prognosis in the clinic. However, there is a lack of understanding of whether IMP2 affects the cargo of cancer cell-derived EVs, thereby modulating macrophage polarization. METHODS: EVs were isolated from IMP2-expressing HCT116 parental cells (WT) and CRISPR/Cas9 IMP2 knockout (KO) cells. EVs were characterized according to MISEV guidelines, microRNA cargo was assessed by microRNA-Seq, and the protein cargo was analyzed by proteomics. Primary human monocyte-derived macrophages (HMDMs) were polarized by EVs, and the expression of genes and surface markers was assessed using qPCR and flow cytometry, respectively. Morphological changes of macrophages, as well as the migratory potential of cancer cells, were assessed by the Incucyte® system and macrophage matrix degradation potential by zymography. Changes in the metabolic activity of macrophages were quantified using a Seahorse® analyzer. For in vivo studies, EVs were injected into the yolk sac of zebrafish larvae, and macrophages were isolated by fluorescence-activated cell sorting. RESULTS: EVs from WT and KO cells had a similar size and concentration and were positive for 25 vesicle markers. The expression of tumor-promoting genes was higher in macrophages polarized with WT EVs than KO EVs, while the expression of TNF and IL6 was reduced. A similar pattern was observed in macrophages from zebrafish larvae treated in vivo. WT EV-polarized macrophages showed a higher abundance of TAM-like surface markers, higher matrix degrading activity, as well as a higher promotion of cancer cell migration. MicroRNA-Seq revealed a significant difference in the microRNA composition of WT and KO EVs, particularly a high abundance of miR-181a-5p in WT EVs, which was absent in KO EVs. Inhibitors of macropinocytosis and phagocytosis antagonized the delivery of miR-181a-5p into macrophages and the downregulation of the miR-181a-5p target DUSP6. Proteomics data showed differences in protein cargo in KO vs. WT EVs, with the differentially abundant proteins mainly involved in metabolic pathways. WT EV-treated macrophages exhibited a higher basal oxygen consumption rate and a lower extracellular acidification rate than KO EV-treated cells. CONCLUSION: Our results show that IMP2 determines the cargo of EVs released by cancer cells, thereby modulating the EVs' actions on macrophages. Expression of IMP2 is linked to the secretion of EVs that polarize macrophages towards a tumor-promoting phenotype.


Asunto(s)
Vesículas Extracelulares , Proteínas de Unión al ARN , Macrófagos Asociados a Tumores , Pez Cebra , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Animales , Macrófagos Asociados a Tumores/metabolismo , Células HCT116 , MicroARNs/genética , MicroARNs/metabolismo , Movimiento Celular/genética , Macrófagos/metabolismo
2.
Chemistry ; 27(11): 3806-3811, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33237604

RESUMEN

The increasing prevalence of metallo-ß-lactamase (MBL)-expressing bacteria presents a worrying trend in antibiotic resistance. MBLs rely on active site zinc ions for their hydrolytic activity and the pursuit of MBL-inhibitors has therefore involved the investigation of zinc chelators. To ensure that such chelators specifically target MBLs, a series of cephalosporin prodrugs of two potent zinc-binders: dipicolinic acid (DPA) and 8-thioquinoline (8-TQ) was prepared. Although both DPA and 8-TQ bind free zinc very tightly (Kd values in the low nm range), the corresponding cephalosporin conjugates do not. The cephalosporin conjugates are efficiently hydrolyzed by MBLs to release DPA or 8-TQ, as confirmed by using both NMR and LC-MS studies. Notably, the cephalosporin prodrugs of DPA and 8-TQ show potent inhibitory activity against NDM, VIM, and IMP classes of MBLs and display potent synergy with meropenem against MBL-expressing clinical isolates of K. pneumoniae and E. coli.


Asunto(s)
Cefalosporinas/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Profármacos/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Escherichia coli/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
3.
Artículo en Inglés | MEDLINE | ID: mdl-30910900

RESUMEN

Food for human consumption is screened widely for the presence of antibiotic-resistant bacteria to assess the potential for transfer of resistant bacteria to the general population. Here, we describe an Enterobacter cloacae complex isolated from imported seafood that encodes two carbapenemases on two distinct plasmids. Both enzymes belong to Ambler class A ß-lactamases, the previously described IMI-2 and a novel family designated FLC-1. The hydrolytic activity of the novel enzyme against aminopenicillins, cephalosporins, and carbapenems was determined.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterobacter cloacae/enzimología , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Cefalosporinas/metabolismo , Enterobacter/efectos de los fármacos , Enterobacter cloacae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , beta-Lactamasas/genética
4.
Mol Pharm ; 16(7): 3145-3156, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31244224

RESUMEN

Photodynamic therapy (PDT) eradicates tumors by the local activation of a photosensitizer with near-infrared light. One of the aspects hampering the clinical use of PDT is the poor selectivity of the photosensitizer. To improve this, we have recently introduced a new approach for targeted PDT by conjugating photosensitizers to nanobodies. Diverse G protein-coupled receptors (GPCRs) show aberrant overexpression in tumors and are therefore interesting targets in cancer therapy. Here we show that GPCR-targeting nanobodies can be used in targeted PDT. We have developed a nanobody binding the extracellular side of the viral GPCR US28, which is detected in tumors like glioblastoma. The nanobody was site-directionally conjugated to the water-soluble photosensitizer IRDye700DX. This nanobody-photosensitizer conjugate selectively killed US28-expressing glioblastoma cells both in 2D and 3D cultures upon illumination with near-infrared light. This is the first example employing a GPCR as target for nanobody-directed PDT. With the emerging role of GPCRs in cancer, this data provides a new angle for exploiting this large family of receptors for targeted therapies.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Inmunoconjugados/farmacología , Indoles/química , Compuestos de Organosilicio/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Receptores de Quimiocina/metabolismo , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Proteínas Virales/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Células HEK293 , Humanos , Inmunoconjugados/uso terapéutico , Indoles/uso terapéutico , Rayos Infrarrojos/uso terapéutico , Compuestos de Organosilicio/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Anticuerpos de Dominio Único/administración & dosificación , Transfección
5.
Lasers Surg Med ; 50(5): 513-522, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29777587

RESUMEN

OBJECTIVE: The aim of this study was to investigate the effects of targeted photoimmunotherapy (PIT) in vitro on cell lines with various expression levels of epidermal growth factor receptor (EGFR) using an anti-EGFR targeted conjugate composed of Cetuximab and IR700DX, phthalocyanine dye. MATERIALS AND METHODS: Relative EGFR density and cell binding assay was conducted in three human head & neck cancer cell lines (scc-U2, scc-U8, and OSC19) and one reference cell line A431. After incubation with the conjugate for 1 or 24 hours, cellular uptake and localization were investigated by confocal laser scanning microscopy and quantified by image analysis. Cell survival was determined using the MTS assay and alamarBlue assay after PIT with a 690 nm laser to a dose of 7 J.cm-2 (at 5 mW.cm-2 ). The mode of cell death was examined with flow cytometry using apoptosis/necrosis staining by Annexin V/propidium iodide, together with immunoblots of anti-apoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL. RESULTS: A431 cells had the highest EGFR density followed by OSC19, and then scc-U2 and scc-U8. The conjugates were localized both on the surface and in the cytosol of the cells after 1- and 24-hour incubation. After 24-hour incubation the granular pattern was more pronounced and in a similar pattern of a lysosomal probe, suggesting that the uptake of conjugates by cells was via receptor-mediated endocytosis. The results obtained from the quantitative imaging analysis correlate with the level of EGFR expression. Targeted PIT killed scc-U8 and A431 cells efficiently; while scc-U2 and OSC19 were less sensitive to this treatment, despite having similar EGFR density, uptake and localization pattern. Scc-U2 cells showed less apoptotic cell dealth than in A431 after 24-hour targeted PIT. Immunoblots showed significantly higher expression of anti-apoptotic Bcl-2 and Bcl-xL proteins in scc-U2 cell lines compared to scc-U8. CONCLUSION: Our study suggests that the effectiveness of EGFR targeted PIT is not only dependent upon EGFR density. Intrinsic biological properties of tumor cell lines also play a role in determining the efficacy of targeted PIT. We have shown that in scc-U2 cells this difference may be caused by differences in the apoptopic pathway. Lasers Surg. Med. 50:513-522, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Receptores ErbB/efectos de los fármacos , Neoplasias de Cabeza y Cuello/terapia , Inmunoterapia , Indoles/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/uso terapéutico , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Cetuximab/uso terapéutico , Receptores ErbB/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Isoindoles
6.
Drug Chem Toxicol ; 39(2): 224-32, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26461142

RESUMEN

Isoniazid (INH or isonicotinic hydrazide) is used for the treatment and prophylaxis of tuberculosis. Liver and brain are two important target organs in INH toxicity. However, the exact mechanisms behind the INH hepatotoxicity or neurotoxicity have not yet been completely understood. Considering the mitochondria as one of the possible molecular targets for INH toxicity, the aim of this study was to evaluate the mechanisms of INH mitochondrial toxicity on isolated mitochondria. Mitochondria were isolated by differential ultracentrifugation from male Sprague-Dawley rats and incubated with different concentrations of INH (25-2000 µM) for the investigation of mitochondrial parameters. The results indicated that INH could interact with mitochondrial respiratory chain and inhibit its activity. Our results showed an elevation in mitochondrial reactive oxygen species (ROS) formation, lipid peroxidation and mitochondrial membrane potential collapse after exposure of isolated liver mitochondria in INH. However, different results were obtained in brain mitochondria. Noteworthy, significant glutathione oxidation, adenosine triphosphate (ATP) depletion and lipid peroxidation were observed in higher concentration of INH, as compared to liver mitochondria. In conclusion, our results suggest that INH may initiate its toxicity in liver mitochondria through interaction with electron transfer chain, lipid peroxidation, mitochondrial membrane potential decline and cytochrome c expulsion which ultimately lead to cell death signaling.


Asunto(s)
Antituberculosos/toxicidad , Encéfalo/efectos de los fármacos , Isoniazida/toxicidad , Hígado/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Encéfalo/metabolismo , Técnicas In Vitro , Peroxidación de Lípido/efectos de los fármacos , Hígado/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
7.
Environ Toxicol ; 30(2): 232-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23996974

RESUMEN

Thallium(I) is a highly toxic heavy metal; however, up to now, its mechanisms are poorly understood. The authors' previous studies showed that this compound could induce reactive oxygen species (ROS) formation, reduced glutathione (GSH) oxidation, membrane lipid peroxidation, and mitochondrial membrane potential (MMP) collapse in isolated rat hepatocyte. Because the liver is the storage site of thallium, it seems that the liver mitochondria are one of the important targets for hepatotoxicity. In this investigation, the effects of thallium on mitochondria were studied to investigate its mechanisms of toxicity. Mitochondria were isolated from rat liver and incubated with different concentrations of thallium (25-200 µM). Thallium(I)-treated mitochondria showed a marked elevation in oxidative stress parameters accompanied by MMP collapse when compared with the control group. These results showed that different concentrations of thallium (25-200 µM) induced a significant (P < 0.05) increase in mitochondrial ROS formation, ATP depletion, GSH oxidation, mitochondrial outer membrane rupture, mitochondrial swelling, MMP collapse, and cytochrome c release. In general, these data strongly supported that the thallium(I)-induced liver toxicity is a result of the disruptive effect of this metal on the mitochondrial respiratory complexes (I, II, and IV), which are the obvious causes of metal-induced ROS formation and ATP depletion. The latter two events, in turn, trigger cell death signaling via opening of mitochondrial permeability transition pore and cytochrome c expulsion.


Asunto(s)
Mitocondrias Hepáticas/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Talio/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Citocromos c/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial , Dilatación Mitocondrial/efectos de los fármacos , Permeabilidad , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
8.
PLoS One ; 19(3): e0300069, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38457402

RESUMEN

INTRODUCTION: Implant infections caused by Staphylococcus aureus are responsible for high mortality and morbidity worldwide. Treatment of these infections can be difficult especially when bacterial biofilms are involved. In this study we investigate the potential of infrared photoimmunotherapy to eradicate staphylococcal infection in a mouse model. METHODS: A monoclonal antibody that targets Wall Teichoic Acid surface components of both S. aureus and its biofilm (4497-IgG1) was conjugated to a photosensitizer (IRDye700DX) and used as photoimmunotherapy in vitro and in vivo in mice with a subcutaneous implant pre-colonized with biofilm of Staphylococcus aureus. A dose of 400 µg and 200 µg of antibody-photosensitizer conjugate 4497-IgG-IRDye700DXwas administered intravenously to two groups of 5 mice. In addition, multiple control groups (vancomycin treated, unconjugated IRDye700DX and IRDye700DX conjugated to a non-specific antibody) were used to verify anti-microbial effects. RESULTS: In vitro results of 4497-IgG-IRDye700DX on pre-colonized (biofilm) implants showed significant (p<0.01) colony-forming units (CFU) reduction at a concentration of 5 µg of the antibody-photosensitizer conjugate. In vivo, treatment with 4497-IgG-IRDye700DX showed no significant CFU reduction at the implant infection. However, tissue around the implant did show a significant CFU reduction with 400 µg 4497-IgG-IRDye700DX compared to control groups (p = 0.037). CONCLUSION: This study demonstrated the antimicrobial potential of photoimmunotherapy for selectively eliminating S. aureus in vivo. However, using a solid implant instead of a catheter could result in an increased bactericidal effect of 4497-IgG-IRDye700DX and administration locally around an implant (per operative) could become valuable applications in patients that are difficult to treat with conventional methods. We conclude that photoimmunotherapy could be a potential additional therapy in the treatment of implant related infections, but requires further improvement.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Inmunoglobulina G/farmacología
10.
Chem Pharm Bull (Tokyo) ; 61(2): 144-50, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23154304

RESUMEN

Based on the existing reports regarding the antiplatelet aggregation activity of hydrazone derivatives, a series of indole hydrazone derivatives were considered as potential antiplatelet agents and synthesized. The structures of the synthesized compounds were confirmed by spectral data and elemental analysis. The new indole hydrazone derivatives were evaluated for their ability to inhibit platelet aggregation induced by adenosine diphosphate (ADP) and arachidonic acid (AA). Compounds 1h and 3h exhibited remarkable activity against arachidonic acid induced platelet aggregation with IC(50) values comparable to that of indomethacin and compound 1i efficiently inhibited platelet aggregation induced by both ADP and AA.


Asunto(s)
Hidrazonas/química , Indoles/química , Inhibidores de Agregación Plaquetaria/síntesis química , Adenosina Difosfato/química , Adenosina Difosfato/farmacología , Ácido Araquidónico/química , Ácido Araquidónico/farmacología , Humanos , Hidrazonas/síntesis química , Hidrazonas/farmacología , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/farmacología
11.
Chem Pharm Bull (Tokyo) ; 61(2): 160-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23183543

RESUMEN

Considering the structural features of a group of known potent inhibitors of human platelet aggregation containing hydrazone structural backbone, a series of novel hydrazone derivatives of 2-hydrazinyl-1,3,4-thiadiazole were synthesized using a one-pot process and tested for their inhibitory activity against platelet aggregation induced by arachidonic acid and ADP. Among the derivatives, compounds 3l, 3o and 3p exhibited the highest antiplatelet aggregation activity. The derivatives were also screened for their potential antimycobacterial activity and compounds 3g, 3k, 3p and 3q were among the most active compounds.


Asunto(s)
Hidrazonas/química , Inhibidores de Agregación Plaquetaria/síntesis química , Bases de Schiff/síntesis química , Tiadiazoles/química , Adenosina Difosfato/química , Adenosina Difosfato/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Ácido Araquidónico/antagonistas & inhibidores , Ácido Araquidónico/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium bovis/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/farmacología , Bases de Schiff/química , Bases de Schiff/farmacología
12.
Toxicol Mech Methods ; 23(8): 617-23, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23819490

RESUMEN

Valproic acid (VPA), an anticonvulsant and mood-stabilizing drug, is widely used for the treatment of different types of seizures and myoclonic epilepsy. Several mechanisms have been suggested for VPA hepatotoxicity, and most of them are associated with oxidative stress. It seems that oxidative stress by VPA treatment has been associated with mitochondrial dysfunction. Therefore, this study investigated the mitochondrial toxicity mechanisms of VPA on freshly isolated rat mitochondria for better understanding pathogenesis of VPA in mitochondrial toxicity. Rat liver mitochondria were obtained by differential ultracentrifugation and were then incubated with different concentrations of VPA (25-200 µM). Our results showed that VPA could induce oxidative stress via rising in mitochondrial reactive oxygen species formation, lipid peroxidation, mitochondrial membrane potential collapse, mitochondrial swelling and finally release of cytochrome c. These effects were well inhibited by pretreatment of isolated mitochondria with cyclosporin A and butylated hydroxytoluene. Based on these results, it is clear that VPA exerts mitochondrial toxicity by impairing mitochondrial functions leading to oxidative stress and cytochrome c expulsion, which start cell death signaling.


Asunto(s)
Anticonvulsivantes/toxicidad , Mitocondrias Hepáticas/efectos de los fármacos , Ácido Valproico/toxicidad , Animales , Citocromos c/metabolismo , Glutatión/metabolismo , Masculino , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
13.
Pharmaceutics ; 15(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37514081

RESUMEN

Macrophages (MΦs) in their pro-inflammatory state (M1) suppress tumour growth, while tumour-associated MΦs (TAMs) can promote tumour progression. The aim of this study was to test the hypothesis that targeted delivery of the immune activator poly(I:C) in aspherical silica microrods (µRs) can repolarize TAMs into M1-like cells. µRs (10 µm × 3 µm) were manufactured from silica nanoparticles and stabilized with dextran sulphate and polyethyleneimine. The THP-1 cell line, differentiated into MΦs, and primary human monocyte-derived MΦs (HMDMs) were treated with tumour-cell-conditioned medium (A549), but only HMDMs could be polarized towards TAMs. Flow cytometry and microscopy revealed elevated uptake of µRs by TAMs compared to non-polarized HMDMs. Flow cytometry and qPCR studies on polarization markers showed desirable effects of poly(I:C)-loaded MPs towards an M1 polarization. However, unloaded µRs also showed distinct actions, which were not induced by bacterial contaminations. Reporter cell assays showed that µRs induce the secretion of the inflammatory cytokine IL-1ß. Macrophages from Nlrp3 knockout mice showed that µRs in concentrations as low as 0.5 µR per cell can activate the inflammasome and induce cell death. In conclusion, our data show that µRs, even if unloaded, can induce inflammasome activation and cell death in low concentrations.

14.
Methods Mol Biol ; 2451: 495-503, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35505027

RESUMEN

Fluorophores have been conjugated to nanobodies for approximately a decade, for several applications in molecular biology. More recently, photosensitizers have been conjugated to nanobodies for targeted photodynamic therapy (PDT). The most common chemistry is the random conjugation in which commercial fluorophores or photosensitizers contain a N-hydroxysuccinimide ester (NHS ester) group that reacts specifically and efficiently with lysines in the amino acid sequence of the nanobody and with the N-terminal amino groups to form a stable amide bond. Alternatively, maleimide-containing fluorophores or photosensitizers can be used for conjugation to thiols, in a site-directed manner through a cysteine incorporated at the C-terminal of the nanobody. This chapter addresses both conjugation strategies, providing details on the reaction conditions, purification, and characterization of the conjugates obtained.


Asunto(s)
Fármacos Fotosensibilizantes , Anticuerpos de Dominio Único , Ésteres , Colorantes Fluorescentes , Ionóforos , Fármacos Fotosensibilizantes/química , Anticuerpos de Dominio Único/química
15.
Methods Mol Biol ; 2451: 481-493, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35505026

RESUMEN

Nanobodies have recently been introduced to the field of photodynamic therapy (PDT) as a very promising strategy to target photosensitizers selectively to cancer cells. Nanobodies are known for their characteristic small size (15 kDa), high specificity, and high binding affinities. These features allow rapid accumulation of nanobody-photosensitizer conjugates at the tumor site and rapid clearance of unbound fractions, and thus illumination for activation is possible 1 or 2 h postinjection. Preclinical studies have shown extensive tumor damage after nanobody-targeted PDT . This chapter addresses the first steps toward preparing nanobody-photosensitizer conjugates, which are the nanobody production and purification. The protocol for nanobody production addresses either medium- or large-scale bacterial expression, while the nanobody purification is described for two main strategies: affinity chromatography and ion-exchange chromatography. For the first strategy, protocols are described for different affinity tags and purification from either medium-scale or large-scale productions. For the second strategy, the protocol given is for purification from a large-scale production.


Asunto(s)
Neoplasias , Fotoquimioterapia , Anticuerpos de Dominio Único , Humanos , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/química , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico
16.
Arch Pharm Res ; 44(8): 1-13, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24062081

RESUMEN

Based on the structural elements of bioactive indole-based compounds, a series of novel 1-substituted indole-3-carboxaldehyde thiosemicarbazones were synthesized as potential antimycobacterial and anticancer agents. The derivatives were prepared via a two-step methodology including N-alkylation(benzylation) of indole-3-carboxaldehyde and conversion of the intermediate aldehydes to corresponding thiosemicarbazones. The derivatives were evaluated for their antimycobacterial activity and compounds 3d (R = propyl) and 3q (R = 4-nitrobenzyl) were among the most potent and selective derivatives with IC50 values of 0.9 and 1.9 µg/mL respectively. The anticancer activity of the derivatives was also assessed against a panel of tumor cell lines. Compounds 3t, 3u, 3v and 3w efficiently inhibited the majority of the cancer cell lines with considerable selectivity.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Indoles/farmacología , Tiosemicarbazonas/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Humanos , Indoles/síntesis química , Indoles/química , Concentración 50 Inhibidora , Ratones , Mycobacterium bovis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Relación Estructura-Actividad , Tiosemicarbazonas/síntesis química , Tiosemicarbazonas/química
17.
ChemMedChem ; 16(10): 1651-1659, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33534956

RESUMEN

Metallo-ß-lactamases (MBLs) are zinc-dependent bacterial enzymes that inactivate essentially all classes of ß-lactam antibiotics including last-resort carbapenems. At present there are no clinically approved MBL inhibitors, and in order to develop such agents it is essential to understand their inhibitory mechanisms. Herein, we describe a comprehensive mechanistic study of a panel of structurally distinct MBL inhibitors reported in both the scientific and patent literature. Specifically, we determined the half-maximal inhibitory concentration (IC50 ) for each inhibitor against MBLs belonging to the NDM and IMP families. In addition, the binding affinities of the inhibitors for Zn2+ , Ca2+  and Mg2+  were assessed by using isothermal titration calorimetry (ITC). We also compared the ability of the different inhibitors to resensitize a highly resistant MBL-expressing Escherichia coli strain to meropenem. These investigations reveal clear differences between the MBL inhibitors studied in terms of their IC50 value, metal binding ability, and capacity to synergize with meropenem. Notably, our studies demonstrate that potent MBL inhibition and synergy with meropenem are not explicitly dependent on the capacity of an inhibitor to strongly chelate zinc.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Piridinas/química , Piridinas/farmacología , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Zinc/química , Zinc/farmacología , Inhibidores de beta-Lactamasas/síntesis química , Inhibidores de beta-Lactamasas/química
18.
Theranostics ; 11(18): 9022-9037, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522225

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of cancer due to the relatively late diagnosis and the limited therapeutic options. Current treatment regimens mainly comprise the cytotoxic agents gemcitabine and FOLFIRINOX. These compounds have shown limited efficacy and severe side effects, highlighting the necessity for earlier detection and the development of more effective, and better-tolerated treatments. Although targeted therapies are promising for the treatment of several types of cancer, identification of suitable targets for early diagnosis and targeted therapy of PDAC is challenging. Interestingly, several transmembrane proteins are overexpressed in PDAC cells that show low expression in healthy pancreas and may therefore serve as potential targets for treatment and/or diagnostic purposes. In this review we describe the 11 most promising transmembrane proteins, carefully selected after a thorough literature search. Favorable features and potential applications of each target, as well as the results of the preclinical and clinical studies conducted in the past ten years, are discussed in detail.


Asunto(s)
Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/patología , Proteínas de la Membrana/fisiología , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/terapia , Biología Computacional/métodos , Humanos , Proteínas de la Membrana/metabolismo , Terapia Molecular Dirigida/métodos , Páncreas/patología , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
19.
J Med Chem ; 64(13): 9141-9151, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34182755

RESUMEN

In an attempt to exploit the hydrolytic mechanism by which ß-lactamases degrade cephalosporins, we designed and synthesized a series of novel cephalosporin prodrugs aimed at delivering thiol-based inhibitors of metallo-ß-lactamases (MBLs) in a spatiotemporally controlled fashion. While enzymatic hydrolysis of the ß-lactam ring was observed, it was not accompanied by inhibitor release. Nonetheless, the cephalosporin prodrugs, especially thiomandelic acid conjugate (8), demonstrated potent inhibition of IMP-type MBLs. In addition, conjugate 8 was also found to greatly reduce the minimum inhibitory concentration of meropenem against IMP-producing bacteria. The results of kinetic experiments indicate that these prodrugs inhibit IMP-type MBLs by acting as slowly turned-over substrates. Structure-activity relationship studies revealed that both phenyl and carboxyl moieties of 8 are crucial for its potency. Furthermore, modeling studies indicate that productive interactions of the thiomandelic acid moiety of 8 with Trp28 within the IMP active site may contribute to its potency and selectivity.


Asunto(s)
Antibacterianos/farmacología , Cefalosporinas/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Cefalosporinas/síntesis química , Cefalosporinas/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Relación Estructura-Actividad , Inhibidores de beta-Lactamasas/síntesis química , Inhibidores de beta-Lactamasas/química
20.
Cancers (Basel) ; 12(10)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977602

RESUMEN

Photodynamic therapy (PDT) induces cell death through local light activation of a photosensitizer, although sub-optimal tumor specificity and side effects have hindered its clinical application. We introduced a new strategy named nanobody-targeted PDT in which photosensitizers are delivered to tumor cells by means of nanobodies. As efficacy of targeted PDT can be hampered by heterogeneity of target expression and/or moderate/low target expression levels, we explored the possibility of combined targeting of endothelial and cancer cells in vitro. We developed nanobodies binding to the mouse VEGFR2, which is overexpressed on tumor vasculature, and combined these with nanobodies specific for the cancer cell target EGFR. The nanobodies were conjugated to the photosensitizer IRDye700DX and specificity of the newly developed nanobodies was verified using several endothelial cell lines. The cytotoxicity of these conjugates was assessed in monocultures and in co-cultures with cancer cells, after illumination with an appropriate laser. The results show that the anti-VEGFR2 conjugates are specific and potent PDT agents. Nanobody-targeted PDT on co-culture of endothelial and cancer cells showed improved efficacy, when VEGFR2 and EGFR targeting nanobodies were applied simultaneously. Altogether, dual targeting of endothelial and cancer cells is a promising novel therapeutic strategy for more effective nanobody-targeted PDT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA