Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 597, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38914943

RESUMEN

Bacterial canker disease caused by Clavibacter michiganensis is a substantial threat to the cultivation of tomatoes, leading to considerable economic losses and global food insecurity. Infection is characterized by white raised lesions on leaves, stem, and fruits with yellow to tan patches between veins, and marginal necrosis. Several agrochemical substances have been reported in previous studies to manage this disease but these were not ecofriendly. Thus present study was designed to control the bacterial canker disease in tomato using green fabricated silver nanoparticles (AgNps). Nanosilver particles (AgNPs) were synthesized utilizing Moringa oleifera leaf extract as a reducing and stabilizing agent. Synthesized AgNPs were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Fourier transform infrared spectrometry (FTIR). FTIR showed presence of bioactive compounds in green fabricated AgNPs and UV-visible spectroscopy confirmed the surface plasmon resonance (SPR) band in the range of 350 nm to 355 nm. SEM showed the rectangular segments fused together, and XRD confirmed the crystalline nature of the synthesized AgNPs. The presence of metallic silver ions was confirmed by an EDX detector. Different concentrations (10, 20, 30, and 40 ppm) of the green fabricated AgNPs were exogenously applied on tomato before applying an inoculum of Clavibacter michigensis to record the bacterial canker disease incidence at different day intervals. The optimal concentration of AgNPs was found to be 30 µg/mg that exhibited the most favorable impact on morphological (shoot length, root length, plant fresh and dry weights, root fresh and dry weights) and physiological parameters (chlorophyll contents, membrane stability index, and relative water content) as well as biochemical parameters (proline, total soluble sugar and catalase activity). These findings indicated a noteworthy reduction in biotic stress through the increase of both enzymatic and non-enzymatic activities by the green fabricated AgNPs. This study marks a first biocompatible approach in assessing the potential of green fabricated AgNPs in enhancing the well-being of tomato plants that affected with bacterial canker and establishing an effective management strategy against Clavibacter michiganensis. This is the first study suggests that low concentration of green fabricated nanosilvers (AgNPs) from leaf extract of Moringa oleifera against Clavibacter michiganensis is a promisingly efficient and eco-friendly alternative approach for management of bacterial canker disease in tomato crop.


Asunto(s)
Nanopartículas del Metal , Enfermedades de las Plantas , Plata , Solanum lycopersicum , Solanum lycopersicum/microbiología , Plata/farmacología , Nanopartículas del Metal/química , Enfermedades de las Plantas/microbiología , Clavibacter , Moringa oleifera/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Tecnología Química Verde , Hojas de la Planta/microbiología
2.
Exp Parasitol ; 256: 108651, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944660

RESUMEN

Infectious diseases such as malaria, dengue, and yellow fever are predominantly transmitted by insect vectors like Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus in tropical regions like India and Africa. In this study, we assessed the larvicidal activity of commonly found seaweeds, including Padina gymnospora, P. pavonica, Gracilaria crassa, Amphiroa fragilissima, and Spatoglossum marginatum, against these mosquito vectors. Our findings indicate that extracts from P. gymnospora Ethyl Acetate (PgEA), P. pavonica Hexane (PpH), and A. fragilissima Ethyl Acetate (AfEA) displayed the highest larval mortality rates for A. stephensi, with LC50 values of 10.51, 12.43, and 6.43 µg/mL, respectively. Additionally, the PgEA extract from P. gymnospora exhibited the highest mortality rate for A. aegypti, with an LC50 of 27.0 µg/mL, while the PgH extract from the same seaweed showed the highest mortality rate for C. quinquefasciatus, with an LC50 of 9.26 µg/mL. Phytochemical analysis of the seaweed extracts revealed the presence of 71 compounds in the solvent extracts. Fourier-transform infrared spectra of the selected seaweeds indicated the presence of functional groups such as alkanes, alcohols, and phenols. Gas chromatography-mass spectrometry analysis of the seaweeds identified major compounds, including hexadecanoic acid in PgEA, tetradecene (e)- in PpEA, octadecanoic acid in GcEA, and 7-hexadecene, (z)-, and trans-7-pentadecene in SmEA.


Asunto(s)
Aedes , Anopheles , Culex , Insecticidas , Algas Marinas , Animales , Insecticidas/análisis , Larva , Algas Marinas/química , Phaeophyceae , Rhodophyta/química
3.
Molecules ; 28(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36770731

RESUMEN

Bio-fortification is a new, viable, cost-effective, and long-term method of administering crucial minerals to a populace with limited exposure to diversified foods and other nutritional regimens. Nanotechnology entities aid in the improvement of traditional nutraceutical absorption, digestibility, and bio-availability. Nano-applications are employed in poultry systems utilizing readily accessible instruments and processes that have no negative impact on animal health and welfare. Nanotechnology is a sophisticated innovation in the realm of biomedical engineering that is used to diagnose and cure various poultry ailments. In the 21st century, zinc nanoparticles had received a lot of considerable interest due to their unusual features. ZnO NPs exhibit antibacterial properties; however, the qualities of nanoparticles (NPs) vary with their size and structure, rendering them adaptable to diverse uses. ZnO NPs have shown remarkable promise in bio-imaging and drug delivery due to their high bio-compatibility. The green synthesized nanoparticles have robust biological activities and are used in a variety of biological applications across industries. The current review also discusses the formulation and recent advancements of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their anti-cancerous activities, activities in wound healing, and drug delivery, followed by a detailed discussion of their mechanisms of action.


Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Animales , Zinc , Óxido de Zinc/química , Nanopartículas del Metal/química , Aves de Corral , Extractos Vegetales/química , Antibacterianos/química
4.
Molecules ; 28(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903290

RESUMEN

Citrus production is harmed worldwide by yellow dragon disease, also known as Huanglongbing (HLB), or citrus greening. As a result, it has negative effects and a significant impact on the agro-industrial sector. There is still no viable biocompatible treatment for Huanglongbing, despite enormous efforts to combat this disease and decrease its detrimental effects on citrus production. Nowadays, green-synthesized nanoparticles are gaining attention for their use in controlling various crop diseases. This research is the first scientific approach to examine the potential of phylogenic silver nanoparticles (AgNPs) to restore the health of Huanglongbing-diseased 'Kinnow' mandarin plants in a biocompatible manner. AgNPs were synthesized using Moringa oleifera as a reducing, capping, and stabilizing agent and characterized using different characterization techniques, i.e., UV-visible spectroscopy with a maximum average peak at 418 nm, scanning electron microscopy (SEM) with a size of 74 nm, and energy-dispersive spectroscopy (EDX), which confirmed the presence of silver ions along with different elements, and Fourier transform infrared spectroscopy served to confirm different functional groups of elements. Exogenously, AgNPs at various concentrations, i.e., 25, 50, 75, and 100 mgL-1, were applied against Huanglongbing-diseased plants to evaluate the physiological, biochemical, and fruit parameters. The findings of the current study revealed that 75 mgL-1 AgNPs were most effective in boosting the plants' physiological profiles, i.e., chl a, chl b, total chl, carotenoid content, MSI, and RWC up to 92.87%, 93.36%, 66.72%, 80.95%, 59.61%, and 79.55%, respectively; biochemical parameters, i.e., 75 mgL-1 concentration decreased the proline content by up to 40.98%, and increased the SSC, SOD, POD, CAT, TPC, and TFC content by 74.75%, 72.86%, 93.76%, 76.41%, 73.98%, and 92.85%, respectively; and fruit parameters, i.e., 75 mgL-1 concentration increased the average fruit weight, peel diameter, peel weight, juice weight, rag weight, juice pH, total soluble solids, and total sugarby up to 90.78%, 8.65%, 68.06%, 84.74%, 74.66%, 52.58%, 72.94%, and 69.69%, respectively. These findings enable us to develop the AgNP formulation as a potential citrus Huanglongbing disease management method.


Asunto(s)
Citrus , Nanopartículas del Metal , Moringa oleifera , Antioxidantes/química , Plata/química , Nanopartículas del Metal/química , Frutas/química , Moringa oleifera/química , Citrus/química
5.
Can J Infect Dis Med Microbiol ; 2023: 1860084, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927532

RESUMEN

Malaria, a highly perilous infectious disease, impacted approximately 230 million individuals globally in 2019. Mosquitoes, vectors of over 10% of worldwide diseases, pose a significant public health menace. The pressing need for novel antimalarial drugs arises due to the imminent threat faced by nearly 40% of the global population and the escalating resistance of parasites to current treatments. This study comprehensively addresses prevalent parasitic and viral illnesses transmitted by mosquitoes, leading to the annual symptomatic infections of 400 million individuals, placing 100 million at constant risk of contracting these diseases. Extensive investigations underscore the pivotal role of traditional plants as rich sources for pioneering pharmaceuticals. The latter half of this century witnessed the ascent of bioactive compounds within traditional medicine, laying the foundation for modern therapeutic breakthroughs. Herbal medicine, notably influential in underdeveloped or developing nations, remains an essential healthcare resource. Traditional Indian medical systems such as Ayurveda, Siddha, and Unani, with a history of successful outcomes, highlight the potential of these methodologies. Current scrutiny of Indian medicinal herbs reveals their promise as cutting-edge drug reservoirs. The propensity of plant-derived compounds to interact with biological receptors positions them as prime candidates for drug development. Yet, a comprehensive perspective is crucial. While this study underscores the promise of plant-based compounds as therapeutic agents against malaria and dengue fever, acknowledging the intricate complexities of drug development and the challenges therein are imperative. The journey from traditional remedies to contemporary medical applications is multifaceted and warrants prudent consideration. This research aspires to offer invaluable insights into the management of malaria and dengue fever. By unveiling plant-based compounds with potential antimalarial and antiviral properties, this study aims to contribute to disease control. In pursuit of this goal, a thorough understanding of the mechanistic foundations of traditional antimalarial and antidengue plants opens doors to novel therapeutic avenues.

6.
Molecules ; 27(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35684312

RESUMEN

Currently, the growth and yield of crops are restrained due to an increase in the occurrence of ecological stresses globally. Biogenic generation of nanomaterials is an important step in the development of environmentally friendly procedures in the nanotechnology field. Silver-based nanomaterials are significant because of their physical, chemical, and biological features along with their plentiful applications. In addition to useful microbes, the green synthesized Ag nanomaterials are considered to be an ecologically friendly and environmentally biocompatible method for the enhancement of crop yield by easing stresses. In the recent decade, due to regular droughts, infrequent precipitation, salinity, and increased temperature, the climate alternation has changed certain ecological systems. As a result of these environmental changes, crop yield has decreased worldwide. The role of biogenic Ag nanomaterials in enhancing methylglyoxal detoxification, antioxidant defense mechanisms, and generating tolerance to stresses-induced ROS injury has been methodically explained in plants over the past ten years. However, certain studies regarding stress tolerance and metal-based nanomaterials have been directed, but the particulars of silver nanomaterials arbitrated stresses tolerance have not been well-reviewed. Henceforth, there is a need to have a good understanding of plant responses during stressful conditions and to practice the combined literature to enhance tolerance for crops by utilization of Ag nanoparticles. This review article illustrates the mechanistic approach that biogenic Ag nanomaterials in plants adopt to alleviate stresses. Moreover, we have appraised the most significant activities by exogenous use of Ag nanomaterials for improving plant tolerance to salt, low and high temperature, and drought stresses.


Asunto(s)
Nanopartículas del Metal , Plata , Productos Agrícolas , Sequías , Salinidad , Estrés Fisiológico/fisiología
7.
Molecules ; 27(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35807519

RESUMEN

In this study, we evaluated bioinspired titanium dioxide nanoparticles (TiO2 NPs) that elicited biochemical and proteome modifications in wheat plants under the biotic stress caused by Puccinia striiformis f. sp. tritici (Pst). Biosynthesis of TiO2 NPs was confirmed using UV-Vis spectrophotometry, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. We found that the nanoparticles with crystalline nature were smaller than 100 nm. The results of FTIR analysis showed the presence of potential functional groups exhibiting O-H, N-H, C-C, and Ti-O stretching. The TiO2 NPs of different concentrations (20, 40, 60, and 80 mg L-1) were exogenously applied to wheat plants under the biotic stress caused by Pst, which is responsible for yellow stripe rust disease. The results of the assessment of disease incidence and percent disease index displayed time- and dose-dependent responses. The 40 mg L-1 TiO2 NPs were the most effective in decreasing disease severity. The bioinspired TiO2 NPs were also evaluated for enzymatic (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), and nonenzymatic metabolites (total proline, phenolic, and flavonoid contents) in wheat plants under stripe rust stress. The 40 mg L-1 TiO2 NPs were effective in eliciting biochemical modifications to reduce biotic stress. We further evaluated the effects of TiO2 NPs through gel- and label-free liquid chromatography-mass spectrometry (LC-MS) proteome analysis. We performed proteome analysis of infected wheat leaves and leaves treated with 40 mg L-1 TiO2 NPs under stripe rust stress. The functional classification of the proteins showed downregulation of proteins related to protein and carbohydrate metabolism, as well as of photosynthesis in plants under biotic stress. An upregulation of stress-related proteins was observed, including the defense mechanisms and primary metabolic pathways in plants treated with 40 mg L-1 TiO2 NPs under stress. The experimental results showed the potential of applying biogenic TiO2 NPs to combat fungal diseases of wheat plants and provided insight into the protein expression of plants in response to biotic stress.


Asunto(s)
Basidiomycota , Nanopartículas , Enfermedades de las Plantas/microbiología , Proteoma , Puccinia , Estrés Fisiológico , Titanio , Triticum/microbiología
8.
Molecules ; 27(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36500240

RESUMEN

In this study, selenium nanoparticles (SeNPs) and cerium oxide nanoparticles (CeONPs) were synthesized by using the extract of Melia azedarach leaves, and Acorus calamusas rhizomes, respectively, and investigated for the biological and sustainable control of yellow, or stripe rust, disease in wheat. The green synthesized NPs were characterized by UV-Visible spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). The SeNPs and CeONPs, with different concentrations (i.e., 10, 20, 30, and 40 mg/L), were exogenously applied to wheat infected with Puccinia striformis. SeNPs and CeONPs, at a concentration of 30 mg/L, were found to be the most suitable concentrations, which reduced the disease severity and enhanced the morphological (plant height, root length, shoot length, leaf length, and ear length), physiological (chlorophyll and membrane stability index), biochemical (proline, phenolics and flavonoids) and antioxidant (SOD and POD) parameters. The antioxidant activity of SeNPs and CeONPs was also measured. For this purpose, different concentrations (50, 100, 150, 200 and 400 ppm) of both SeNPs and CeONPs were used. The concentration of 400 ppm most promoted the DPPH, ABTS and reducing power activity of both SeNPs and CeONPs. This study is considered the first biocompatible approach to evaluate the potential of green synthesized SeNPs and CeONPs to improve the health of yellow, or stripe rust, infected wheat plants and to provide an effective management strategy to inhibit the growth of Puccinia striformis.


Asunto(s)
Basidiomycota , Nanopartículas , Selenio , Triticum , Selenio/farmacología , Selenio/química , Nanopartículas/química , Antioxidantes/farmacología , Antioxidantes/química
9.
Appl Microbiol Biotechnol ; 105(6): 2261-2275, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33591386

RESUMEN

Green synthesis of silver nanoparticles (SNPs) by harnessing the natural abilities of plant secondary metabolites has advantages over routine physical and chemical synthetic approaches due to their one-step experimental setup to reduce and stabilize the bulk silver into SNPs, biocompatible nature, and therapeutic significance. The unique size, shape, and biochemical functional corona of SNPs embellish them with the potential to perform therapeutic actions by adopting various mechanistic approaches including but not limited to the disruption of the electron transport chain, mitochondrial damage, DNA fragmentation, inhibition of ATP synthase activity, disorganization of the cell membrane, suspension of cellular signaling pathways, induction of apoptosis, and inhibition of enzymes activity. This review elaborates the biogenic synthesis of SNPs in redox chemical reactions by using plant secondary metabolites found in plant extracts. In addition, it explains the synergistic influence of physicochemical reaction parameters such as the temperature, pH, the concentration of the AgNO3, and the ratio of reactants to affect the reaction kinetics, molecular mechanics, enzymatic catalysis, and protein conformations that aid to affect the size, shape, and potential biochemical corona of nanoparticles. This review also provides up-to-date information on the mechanistic actions that embellish the plant-based SNPs, an anticancer, cytotoxic, antidiabetic, antimicrobial, and antioxidant potential. The mechanistic understanding of the therapeutic actions of SNPs will help in precision medicine to develop customized treatment and healthcare approaches for the welfare of the human population. KEY POINTS: • Significance of the biogenic nanoparticles • Biomedical application potential of the plant-based silver nanoparticles • Mechanism of the anticancer, antidiabetic, and antimicrobial actions of the plant-based silver nanoparticles.


Asunto(s)
Diabetes Mellitus , Nanopartículas del Metal , Neoplasias , Antibacterianos , Tecnología Química Verde , Humanos , Infecciones , Neoplasias/tratamiento farmacológico , Extractos Vegetales , Plata
10.
Int J Health Plann Manage ; 35(6): 1306-1310, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32869363

RESUMEN

Throughout the world as health systems are being prepared to deal with the SARS-CoV-2 outbreak which will affect the management of HIV, diabetes, mental health and mainly maternal healthcare systems. As all efforts are focused on understanding the epidemiology, clinical features, transmission patterns, and management of the COVID-19 outbreak, there has been very little concern expressed over the effects on maternal health services. It is highly likely that the present situation may exacerbate maternal mortality in suburban and rural areas. The present situation requires governments and NGOs to make necessary arrangements to support people with prenatal and postnatal care.


Asunto(s)
COVID-19/epidemiología , Servicios de Salud Materna/organización & administración , COVID-19/prevención & control , Femenino , Humanos , Mortalidad Materna , Pakistán/epidemiología , Atención Perinatal/organización & administración , Embarazo , Atención Prenatal/organización & administración
11.
Int J Health Plann Manage ; 35(5): 993-996, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32567725

RESUMEN

Throughout the world, the public is being informed about the physical effects of SARS-CoV-2 infection and steps to take to prevent exposure to the coronavirus and manage symptoms of COVID-19 if they appear. However, the effects of this pandemic on one's mental health have not been studied at length and are still not known. As all efforts are focused on understanding the epidemiology, clinical features, transmission patterns, and management of the COVID-19 outbreak, there has been very little concern expressed over the effects on one's mental health and on strategies to prevent stigmatization. People's behavior may greatly affect the pandemic's dynamic by altering the severity, transmission, disease flow, and repercussions. The present situation requires raising awareness in public, which can be helpful to deal with this calamity. This perspective article provides a detailed overview of the effects of the COVID-19 outbreak on the mental health of people.


Asunto(s)
Infecciones por Coronavirus/psicología , Salud Mental , Pandemias , Neumonía Viral/psicología , Adolescente , Anciano , COVID-19 , Niño , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/epidemiología , Personas con Discapacidad/psicología , Personal de Salud/psicología , Humanos , Trastornos Mentales/epidemiología , Trastornos Mentales/etiología , Neumonía Viral/complicaciones , Neumonía Viral/epidemiología , Factores de Riesgo , Estereotipo
12.
Appl Microbiol Biotechnol ; 99(23): 9923-34, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26392135

RESUMEN

Synthesis of silver nanoparticles by plants and plant extracts (green synthesis) has been developed into an important innovative biotechnology, especially in the application of such particles in the control of pathogenic bacteria. This is a safer technology, biologically and environmentally, than synthesis of silver nanoparticles by chemical or physical methods. Plants are preferable to microbes as agents for the synthesis of silver nanoparticles because plants do not need to be maintained in cell culture. The antibacterial activity of bionanoparticles has been extensively explored during the past decade. This review examines studies published in the last decade that deal with the synthesis of silver nanoparticles in plants and their antibacterial activity.


Asunto(s)
Antiinfecciosos/metabolismo , Nanopartículas/metabolismo , Extractos Vegetales/metabolismo , Plantas/metabolismo , Plata/metabolismo , Biotecnología/métodos , Biotecnología/tendencias
14.
Artículo en Inglés | MEDLINE | ID: mdl-38884854

RESUMEN

The convergence of nanotechnology with bioinformatics and the study of plant secondary metabolites hold remarkable potential for transformative scientific breakthroughs. Synergy enables a deeper understanding of the biosynthesis and functions of plant secondary metabolites, unlocking avenues to engineer novel applications in areas like pharmaceuticals, agriculture, and sustainable materials. The present study was conducted to check the effect of plant-mediated selenium nanoparticles to improve the bioactive compounds in sesame. Three varieties of sesame (TS-5, TH-6, and Till-18) were sown and got treated with different concentration of selenium nanoparticles. On the basis of antioxidant, biochemical, and physiological parameters, best performing seed samples from crop were selected and subjected to UHPLC analysis. From all 276 identified metabolites, the top 20 differentially expressed bioactive, medicinally important compounds were subjected to Swiss target prediction, KEGG, and Metascape analysis to reveal drug targets, gene targets, cell targets, and disease targets. Swiss target prediction revealed that most of the drug targets had kinases as the highest target in all the bioactive metabolites, followed by nuclear transporters, cytochrome P450, and proteins associated with electrochemical channels. Metascape analysis revealed that most of the compounds had highest enrichment in non-canonical activation of NOTCH3 followed by regulation of hormone levels. Furthermore, DisGeNET analysis revealed that most of the metabolites had strong association with impaired glucose tolerance followed by myocardial ischemia and neuralgia. Tissue and cell accumulation analysis by PaGeneBase revealed the highest accumulation in the small intestine, colon, ovary, and DRG cells. The study concluded that selenium nanoparticles has an ability to improve certain medicinally important metabolites in sesame, coupled with bioinformatics tools which revealed a great insight into the potential of those compounds, and the information can further be used in future studies.

15.
Heliyon ; 10(7): e27909, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38571619

RESUMEN

Sesame (Sesamum indicum) is abundant in a diverse range of lignans, including sesamin, and γ-tocopherol, constituting a cluster of bioactive phenolic compound used for food and medicinal purposes. Cardiovascular diseases remain a leading global health challenge, demanding vigilant prevention and innovative treatments. This study was carried out to evaluate the effect of plant mediated SeNPs on sesame metabolic profile and to screen and check the effect bioactive compounds against CVD via molecular drug docking technique. Three sesame germplasms TS-5, TH-6 and Till-18 were treated with varying concentrations (10, 20, 30, 40 and 50 ppm) of plant-mediated selenium nanoparticles (SeNPs). There were three groups of treatments group-1 got only seed pretreatments of SeNPs, Group-2 with only foliar applications of SeNPs and Group-3 with both seed pretreatments and foliar applications of SeNPs. It was found that plants treated with 40 ppm of SeNPS in group 3 exhibited the highest total phenolic and flavonoid content. Total phenolic content at T4 was highest for TS-5 (134%), TH-6 (132%), and Till-18 (112%). LCMS analysis revealed a total of 276 metabolites, with phenolics, flavonoids, and free fatty acids being most abundant. KEGG analysis indicated enrichment in free fatty acid and phenylalanine tryptophan pathways. ADMET analysis and virtual screening resulted in total of five metabolic compounds as a potential ligand against Hemoglobin beta subunit. Lowest binding energy was achieved by Delta-Tocopherol (-6.98) followed by Lactoflavin (-6.20) and Sesamin (-5.00). Lipinski rule of five revealed that all the compounds completely safe to be used as drug against CVD and specifically for HBB. It was concluded that bioactive compounds from sesame could be an alternative source of drug for CVD related problems and especially for HBB.

16.
Int J Biol Macromol ; 256(Pt 1): 128379, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000583

RESUMEN

Extreme changes in weather including heat-wave and high-temperature fluctuations are predicted to increase in intensity and duration due to climate change. Wheat being a major staple crop is under severe threat of heat stress especially during the grain-filling stage. Widespread food insecurity underscores the critical need to comprehend crop responses to forthcoming climatic shifts, pivotal for devising adaptive strategies ensuring sustainable crop productivity. This review addresses insights concerning antioxidant, physiological, molecular impacts, tolerance mechanisms, and nanotechnology-based strategies and how wheat copes with heat stress at the reproductive stage. In this study stress resilience strategies were documented for sustainable grain production under heat stress at reproductive stage. Additionally, the mechanisms of heat resilience including gene expression, nanomaterials that trigger transcription factors, (HSPs) during stress, and physiological and antioxidant traits were explored. The most reliable method to improve plant resilience to heat stress must include nano-biotechnology-based strategies, such as the adoption of nano-fertilizers in climate-smart practices and the use of advanced molecular approaches. Notably, the novel resistance genes through advanced molecular approach and nanomaterials exhibit promise for incorporation into wheat cultivars, conferring resilience against imminent adverse environmental conditions. This review will help scientific communities in thermo-tolerance wheat cultivars and new emerging strategies to mitigate the deleterious impact of heat stress.


Asunto(s)
Proteínas de Choque Térmico , Triticum , Proteínas de Choque Térmico/genética , Triticum/genética , Cambio Climático , Antioxidantes , Respuesta al Choque Térmico , Grano Comestible/genética
17.
ACS Omega ; 9(13): 15449-15462, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585053

RESUMEN

Medicinal plant-based cerium oxide nanoparticles (CeO2NPs) possessed excellent antimicrobial properties against multiple strains of Gram-positive and Gram-negative bacteria. The CeO2NPs are popular because their electropositive charged surface causes oxidation of plasma membrane and facilitates the penetration of CeO2NPs inside the pathogen body. In the present research work, CeO2NPs stabilized with Mentha leaf extract; as a result, nanoparticles surface-bonded with various functional groups of phytochemicals which enhanced the therapeutic potential of CeO2NPs. The inhibition percentage of CeO2NPs was evaluated against eight pathogenic Gram-positive bacteria Staphylococcus aureus and Streptococcus epidermidis; Gram-negative bacteria Escherichia coli, Stenotrophomonas maltophilia, Comamonas sp., Halobacterium sp., and Klebsiella pneumoniae; and plant bacteria Xanthomonas sp. The antifungal properties of CeO2NPs were evaluated against three pathogenic fungal species Bipolaris sorokiniana, Aspergillus flavus, and Fusarium oxysporum via the streak plate method. The antimicrobial inhibitory activity of CeO2NPs was good to excellent. The current research work clearly shows that three different medicinal plants Mentha royleana, Mentha longifolia, and Mentha arvensis based CeO2NPs, variation in nanoparticle sizes, and surface-to-volume ratio of green CeO2NPs are three factors responsible to generate and provoke antimicrobial activities of CeO2NPs against human pathogenic bacteria and plant infecting fungi. The results show that CeO2NPs possessed good antimicrobial properties and are effective to use for pharmaceutical applications and as a food preservative because of low toxicity, organic coating, and acceptable antimicrobial properties. This study showed a rapid and well-organized method to prepare stable phytochemical-coated CeO2NPs with three different plants M. royleana, M. longifolia, and M. arvensis with remarkable antibacterial and antifungal characteristics.

18.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319072

RESUMEN

In the present investigation, the role of GS-AgNPs treatment in wheat plants was carried out in reducing heat stress with the aim of facilitating scientists on this topic. The effect of GS-AgNPs against heat stress has rarely been deliberated in wheat plants, and only a few studies have been established earlier in this scenario. This work illustrated the effect of GS-AgNPs on the regulation of carbohydrates metabolism, SOD, proteins, crude fibers, and minerals changes in wheat plants. Data were analysed using PCA analysis, correlation parameters, and normal probability distribution in PAST 3 software. The results indicated that heat stress alone caused severe changes in carbohydrates metabolism, SOD, proteins, crude fibers, and minerals immediately so that plants could not recover without foreign stabilizers such as GS-AgNPs. The application of GS-AgNPs increases the flux of carbohydrates metabolism, SOD, and proteins, including HSPs, crude fibers, and minerals, in wheat plants to reduce the effect of heat stress. The 50 mg/l concentration of GS-AgNPs has shown an increase in carbohydrates metabolism and SOD activity, while crude fibres have shown a significant enhancement at 100 mg/l of GS-AgNPs. The crude and true proteins were also shown pronounced increase in treatment to a concentration of 50 mg/l of GS-AgNPs. GS-AgNPs stimulated HSP production; most importantly, smHSP production was observed in the present results with other HSPs in wheat plants treated with a 50 mg/l concentration of GS-AgNPs. The mineral distribution was also regulated by the respective treatment of GS-AgNPs, and the highest amounts of Ca, P and Fe were found to be highest in wheat under heat stress. In general, we computed the expected model based on GS-AgNPs on the genes/factors that respond to heat stress and their potential role in mitigating heat stress in wheat. In addition, we discussed the prospective signalling pathway triggered by GS-AgNPs in wheat against heat stress. In the future, this work might be helpful in distinguishing the genetic variation due to GS-AgNPs in promoting tolerance in wheat against heat stress.Communicated by Ramaswamy H. Sarma.

19.
ACS Omega ; 9(24): 25555-25574, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38911815

RESUMEN

Arachis hypogaea is the most significant oilseed nutritious legume crop in agricultural trade across the world. It is recognized as a valued crop for its contributions to nourishing food, as a cooking oil, and for meeting the protein needs of people who are unable to afford animal protein. Currently, its production, marketability, and consumption are hindered because of Aspergillus species infection that consequently contaminates the kernels with aflatoxins. Regarding health concerns, humans and animals are affected by acute and chronic aflatoxin toxicity and millions of people are at high risk of chronic levels. Most methods used to store peanuts are traditional and serve effectively for short-term storage. Now the question for long-term storage has been raised, and this promptly finds potential approaches to the issue. It is imperative to reduce the aflatoxin levels in peanuts to a permissible level by introducing detoxifying innovations. Most of the detoxification reports mention physical, chemical, and biological techniques. However, many current approaches are impractical because of time consumption, loss of nutritional quality, or weak detoxifying efficiency. Therefore, it is crucial to investigate practical, economical, and green methods to control Aspergillus flavus that address current global food security problems. Herein, a green and economically revolutionary way is a nanotechnology that has demonstrated its potential to connect farmers to markets, elevate international marketability, improve human and animal health conditions, and enhance food quality and safety by the management of fungal diseases. Due to the antimicrobial potential of nanoparticles, they act as nanofungicides and have an incredible role in the control of aflatoxins. Nanoparticles have ultrasmall sizes and therefore penetrate the fungal body and invade the pathogen machinery, leading to fungal cell death by ROS production, mutation in DNA, disruption of organelles, and membrane leakage. This is the first mechanistic overview that unveils a comprehensive insight into aflatoxin contamination in peanuts, its prevalence, health effects, and management in addition to nanotechnological interventions that serve as a triple defense approach to detoxify aflatoxins. The optimum use of nanofungicides ensures food safety and the development of goals, especially "zero hunger".

20.
PLoS One ; 19(4): e0297764, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598493

RESUMEN

The commercial-scale production of Caralluma tuberculata faces significant challenges due to lower seed viability and sluggish rate of root growth in natural conditions. To overcome these obstacles, using phyto-mediated selenium nanomaterials as an in vitro rooting agent in plant in vitro cultures is a promising approach to facilitate rapid propagation and enhance the production of valuable therapeutic compounds. This study aimed to investigate the impact of phytosynthesized selenium nanoparticles (SeNPs) on the morphological growth attributes, physiological status, and secondary metabolite fabrication in in vitro propagated Caralluma tuberculata. The results demonstrated that a lower dose of SeNPs (100 µg/L) along with plant growth regulators (IBA 1 mg/L) had an affirmative effect on growth parameters and promoted earliest root initiation (4.6±0.98 days), highest rooting frequency (68.21±5.12%), number of roots (6.3±1.8), maximum fresh weight (710±6.01 mg) and dry weight (549.89±6.77 mg). However, higher levels of SeNPs (200 and 400 µg/L) in the growth media proved detrimental to growth and development. Further, stress caused by SeNPs at 100 µg/L along with PGRs (IBA 1 mg/L) produced a higher level of total chlorophyll contents (32.66± 4.36 µg/ml), while cultures exposed to 200 µg/L SeNPs alone exhibited the maximum amount of proline contents (10.5± 1.32 µg/ml). Interestingly, exposure to 400 µg/L SeNPs induced a stress response in the cultures, leading to increased levels of total phenolic content (3.4 ± 0.052), total flavonoid content (1.8 ± 0.034), and antioxidant activity 82 ± 4.8%). Furthermore, the combination of 100 µg/L SeNPs and plant growth regulators (1 mg/L IBA) led to accelerated enzymatic antioxidant activities, including superoxide dismutase (SOD = 4.4 ± 0.067 U/mg), peroxidase dismutase (POD = 3.3 ± 0.043 U/mg), catalase (CAT = 2.8 ± 0.048 U/mg), and ascorbate peroxidase (APx = 1.6 ± 0.082 U/mg). This is the first report that highlights the efficacy of SeNPs in culture media and presents a promising approach for the commercial propagation of C. tuberculata with a strong antioxidant defense system in vitro.


Asunto(s)
Apocynaceae , Nanopartículas , Selenio , Antioxidantes/metabolismo , Selenio/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA