Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
EMBO J ; 29(10): 1774-85, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20400940

RESUMEN

Mitochondria are crucial organelles in the production of energy and in the control of signalling cascades. A machinery of pro-fusion and fission proteins regulates their morphology and subcellular localization. In muscle this results in an orderly pattern of intermyofibrillar and subsarcolemmal mitochondria. Muscular atrophy is a genetically controlled process involving the activation of the autophagy-lysosome and the ubiquitin-proteasome systems. Whether and how the mitochondria are involved in muscular atrophy is unknown. Here, we show that the mitochondria are removed through autophagy system and that changes in mitochondrial network occur in atrophying muscles. Expression of the fission machinery is per se sufficient to cause muscle wasting in adult animals, by triggering organelle dysfunction and AMPK activation. Conversely, inhibition of the mitochondrial fission inhibits muscle loss during fasting and after FoxO3 overexpression. Mitochondrial-dependent muscle atrophy requires AMPK activation as inhibition of AMPK restores muscle size in myofibres with altered mitochondria. Thus, disruption of the mitochondrial network is an essential amplificatory loop of the muscular atrophy programme.


Asunto(s)
Mitocondrias/metabolismo , Atrofia Muscular/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia , Línea Celular , Humanos , Ratones , Microscopía Fluorescente/métodos , Modelos Biológicos , Músculo Esquelético/patología , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transfección
2.
Cell Metab ; 6(6): 458-71, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18054315

RESUMEN

Autophagy allows cell survival during starvation through the bulk degradation of proteins and organelles by lysosomal enzymes. However, the mechanisms responsible for the induction and regulation of the autophagy program are poorly understood. Here we show that the FoxO3 transcription factor, which plays a critical role in muscle atrophy, is necessary and sufficient for the induction of autophagy in skeletal muscle in vivo. Akt/PKB activation blocks FoxO3 activation and autophagy, and this effect is not prevented by rapamycin. FoxO3 controls the transcription of autophagy-related genes, including LC3 and Bnip3, and Bnip3 appears to mediate the effect of FoxO3 on autophagy. This effect is not prevented by proteasome inhibitors. Thus, FoxO3 controls the two major systems of protein breakdown in skeletal muscle, the ubiquitin-proteasomal and autophagic/lysosomal pathways, independently. These findings point to FoxO3 and Bnip3 as potential therapeutic targets in muscle wasting disorders and other degenerative and neoplastic diseases in which autophagy is involved.


Asunto(s)
Autofagia/fisiología , Factores de Transcripción Forkhead/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Animales , Autofagia/genética , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/antagonistas & inhibidores , Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Serina-Treonina Quinasas TOR , Ubiquitina/metabolismo
3.
FASEB J ; 23(11): 3896-905, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19661286

RESUMEN

A better understanding of the signaling pathways that control muscle growth is required to identify appropriate countermeasures to prevent or reverse the loss of muscle mass and force induced by aging, disuse, or neuromuscular diseases. However, two major issues in this field have not yet been fully addressed. The first concerns the pathways involved in leading to physiological changes in muscle size. Muscle hypertrophy based on perturbations of specific signaling pathways is either characterized by impaired force generation, e.g., myostatin knockout, or incompletely studied from the physiological point of view, e.g., IGF-1 overexpression. A second issue is whether satellite cell proliferation and incorporation into growing muscle fibers is required for a functional hypertrophy. To address these issues, we used an inducible transgenic model of muscle hypertrophy by short-term Akt activation in adult skeletal muscle. In this model, Akt activation for 3 wk was followed by marked hypertrophy ( approximately 50% of muscle mass) and by increased force generation, as determined in vivo by ankle plantar flexor stimulation, ex vivo in intact isolated diaphragm strips, and in single-skinned muscle fibers. No changes in fiber-type distribution and resistance to fatigue were detectable. Bromodeoxyuridine incorporation experiments showed that Akt-dependent muscle hypertrophy was accompanied by proliferation of interstitial cells but not by satellite cell activation and new myonuclei incorporation, pointing to an increase in myonuclear domain size. We can conclude that during a fast hypertrophic growth myonuclear domain can increase without compromising muscle performance.


Asunto(s)
Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Activación Enzimática , Hipertrofia/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiopatología , Células Satélite del Músculo Esquelético/fisiología , Transducción de Señal/efectos de los fármacos
4.
J Psychopharmacol ; 34(7): 716-725, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32403969

RESUMEN

BACKGROUND: Major depression is a common mood disorder and the central sphingolipid system has been identified as a possible drug target of this condition. Here we investigated the action of antidepressant drugs on sphingolipid levels in rat brain regions, plasma and in cultured mouse macrophages. METHODS: Two antidepressant drugs were tested: the serotonin reuptake inhibitor paroxetine and the noradrenaline reuptake inhibitor desipramine, either following acute or chronic treatments. Content of sphingosine and ceramide were analysed using LC-MS or HPLC-UV, respectively. This was from samples of brain, plasma and cultured mouse macrophages. Antidepressant-induced effects on mRNA expression for two key genes of the sphingolipid pathway, SMPD1 and ASAH1, were also measured by using quantitative real-time PCR. RESULTS: Chronic but not acute administration of paroxetine or desipramine reduced sphingosine levels in the prefrontal cortex and hippocampus (only paroxetine) but not in the striatum. Ceramide levels were also measured in the hippocampus following chronic paroxetine and likewise to sphingosine this treatment reduced its levels. The corresponding collected plasma samples from chronically treated animals did not show any decrease of sphingosine compared to the corresponding controls. Both drugs failed to reduce sphingosine levels from cultured mouse macrophages. The drug-induced decrease of sphingolipids coincided with reduced mRNA expression of two enzymes of the central sphingolipid pathway, i.e. acid sphingomyelinase (SMPD1) and acid ceramidase (ASAH1). CONCLUSIONS: This study supports the involvement of brain sphingolipids in the mechanism of action by antidepressant drugs and for the first time highlights their differential effects on brain versus plasma levels.


Asunto(s)
Encéfalo/efectos de los fármacos , Desipramina/farmacología , Paroxetina/farmacología , Esfingolípidos/metabolismo , Ceramidasa Ácida/genética , Inhibidores de Captación Adrenérgica/administración & dosificación , Inhibidores de Captación Adrenérgica/farmacología , Animales , Encéfalo/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/fisiopatología , Desipramina/administración & dosificación , Modelos Animales de Enfermedad , Masculino , Ratones , Paroxetina/administración & dosificación , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Esfingomielina Fosfodiesterasa/genética
5.
Plants (Basel) ; 9(5)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349369

RESUMEN

A collection of cultivated Liriope and Ophiopogon plants was established in 1996-1998 and subsequently hosted at a horticultural college. Uncertainties about the identification of the accessions, compounded by potential errors in propagation and labelling have led to waning confidence in the identities of the plants in the collection. The potential for using DNA barcoding to determine the species identities of the accessions was investigated. The DNA barcode regions of the plastid ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit gene (rbcL) and nuclear ribosomal internal transcribed spacer (nrITS) were amplified. DNA sequence analysis allowed the sequences of the accessions to be compared to reference sequences in public databases. A simple haplotype map of the characteristic polymorphic positions in the rbcL regions was used to clearly distinguish between the two genera and assign Ophiopogon accessions to individual species or sub-groups of species. The ITS sequence data confirmed these genus and species assignations and provided greater resolution to distinguish between closely related species. The combination of two DNA barcodes allowed most of the accessions to be assigned to individual species. This molecular verification confirmed the identity of about 70% of the accessions, with the remaining 30% demonstrating a range of mistaken identities at the species and genus levels.

6.
Genes (Basel) ; 10(4)2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30970623

RESUMEN

There is considerable potential for the use of DNA barcoding methods to authenticate raw medicinal plant materials, but their application to testing commercial products has been controversial. A simple PCR test targeting species-specific sequences within the nuclear ribosomal internal transcribed spacer (ITS) region was adapted to screen commercial products for the presence of Hypericum perforatum L. material. DNA differing widely in amount and extent of fragmentation was detected in a number of product types. Two assays were designed to further analyse this DNA using a curated database of selected Hypericum ITS sequences: A qPCR assay based on a species-specific primer pair spanning the ITS1 and ITS2 regions, using synthetic DNA reference standards for DNA quantitation and a Next Generation Sequencing (NGS) assay separately targeting the ITS1 and ITS2 regions. The ability of the assays to detect H. perforatum DNA sequences in processed medicines was investigated. Out of twenty different matrices tested, both assays detected H. perforatum DNA in five samples with more than 10³ ITS copies µL-1 DNA extract, whilst the qPCR assay was also able to detect lower levels of DNA in two further samples. The NGS assay confirmed that H. perforatum was the major species in all five positive samples, though trace contaminants were also detected.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN Espaciador Ribosómico/genética , Hypericum/genética , Plantas Medicinales/genética , ADN/genética , ADN de Plantas/genética , Hypericum/clasificación , Extractos Vegetales/clasificación , Extractos Vegetales/genética , Plantas Medicinales/clasificación
7.
Front Plant Sci ; 9: 1828, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619401

RESUMEN

Herbal medicines are used globally for their health benefits as an alternative therapy method to modern medicines. The market for herbal products has increased rapidly over the last few decades, but this has in turn increased the opportunities for malpractices such as contamination or substitution of products with alternative plant species. In the 1990s, a series of severe renal disease cases were reported in Belgium associated with weight loss treatment, in which the active species Stephania tetrandra was found to be substituted with Aristolochia fangchi. A. fangchi contains toxic aristolochic acids, which have been linked to kidney failure, as well as cancers of the urinary tract. Because of these known toxicities, herbal medicines containing these compounds, or potentially contaminated by these plants, have been restricted or banned in some countries, but they are still available via the internet and in alternate formulations. In this study, a DNA based method based on quantitative real-time PCR (qPCR) was tested to detect and distinguish Aristolochia subg. Siphisia (Duch.) O.C.Schmidt species from a range of medicinal plants that could potentially be contaminated with Aristolochia material. Specific primers were designed to confirm that Aristolochia subg. Siphisia can be detected, even in small amounts, if it is present in the products, fulfilling the aim of offering a simple, cheaper and faster solution than the chemical methods. A synthetic gBlock template containing the primer sequences was used as a reference standard to calibrate the qPCR assay and to estimate the copy number of a target gene per sample. Generic primers covering the conserved 5.8S rRNA coding region were used as internal control to verify DNA quality and also as a reference gene for relative quantitation. To cope with potentially degraded DNA, all qPCR primer sets were designed to generate PCR products of under 100 bp allowing detection and quantification of A. fangchi gBlock even when mixed with S. tetrandra gBlock in different ratios. All proportions of Aristolochia, from 100 to 2%, were detected. Using standards, associating the copy number to each start quantity, the detection limit was calculated and set to about 50 copies.

8.
Plants (Basel) ; 6(4)2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-29072582

RESUMEN

Liriope and Ophiopogon species have a long history of use as traditional medicines across East Asia. They have also become widely used around the world for ornamental and landscaping purposes. The morphological similarities between Liriope and Ophiopogon taxa have made the taxonomy of the two genera problematic and caused confusion about the identification of individual specimens. Molecular approaches could be a useful tool for the discrimination of these two genera in combination with traditional methods. Seventy-five Liriope and Ophiopogon samples from the UK National Plant Collections of Ophiopogon and Liriope were analyzed. The 5' end of the DNA barcode region of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcLa) was used for the discrimination of the two genera. A single nucleotide polymorphism (SNP) between the two genera allowed the development of discriminatory tests for genus-level identification based on specific PCR and high-resolution melt curve (HRM) assays. The study highlights the advantage of incorporating DNA barcoding methods into plant identification protocols and provides simple assays that could be used for the quality assurance of commercially traded plants and herbal drugs.

9.
Autophagy ; 8(11): 1697-700, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22940840

RESUMEN

The autophagy-lysosome system is essential for muscle cell homeostasis and its dysfunction has been linked to muscle disorders that are typically distinguished by massive autophagic buildup. Among them, glycogen storage disease type II (GSDII) is characterized by the presence of large glycogen-filled lysosomes in the skeletal muscle, due to a defect in the lysosomal enzyme acid α-glucosidase (GAA). The accumulation of autophagosomes is believed to be detrimental for myofiber function. However, the role of autophagy in the pathogenesis of GSDII is still unclear. To address this issue we monitored autophagy in muscle biopsies and myotubes of early and late-onset GSDII patients at different time points of disease progression. Moreover we also analyzed muscles from patients treated with enzyme replacement therapy (ERT). Our data suggest that autophagy is a protective mechanism that is required for myofiber survival in late-onset forms of GSDII. Importantly, our findings suggest that a normal autophagy flux is important for a correct maturation of GAA and for the uptake of recombinant human GAA. In conclusion, autophagy failure plays an important role in GSDII disease progression, and the development of new drugs to restore the autophagic flux should be considered to improve ERT efficacy.


Asunto(s)
Autofagia , Enfermedad del Almacenamiento de Glucógeno Tipo II/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Atrofia Muscular/complicaciones , Atrofia Muscular/patología , Animales , Modelos Animales de Enfermedad , Enfermedad del Almacenamiento de Glucógeno Tipo II/enzimología , Humanos , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Atrofia Muscular/enzimología , alfa-Glucosidasas/metabolismo
10.
Autophagy ; 6(2): 307-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20104028

RESUMEN

Autophagy is required for cellular survival and for the clearance of damaged proteins and altered organelles. Excessive autophagy activation contributes to muscle loss in different catabolic conditions. However, the function of basal autophagy for homeostasis of skeletal muscle was unknown. To clarify this issue we have generated conditional and inducible knockout mice for the critical gene Atg7, to block autophagy specifically in skeletal muscle. Atg7 null muscles reveal an unexpected phenotype which is characterized by muscle atrophy, weakness and features of myofiber degeneration. Morphological, biochemical and molecular analyses of our autophagy knockout mice show the presence of protein aggregates, abnormal mitochondria, accumulation of membrane bodies, sarcoplasmic reticulum distension, vacuolization, oxidative stress and apoptosis. Moreover, autophagy inhibition does not protect skeletal muscles from atrophy during denervation and fasting, but instead promotes greater muscle loss. In conclusion, autophagy plays a critical role for myofiber maintenance and its activation is crucial to avoid accumulation of toxic proteins and dysfunctional organelles that, in the end, would lead to atrophy and weakness.


Asunto(s)
Autofagia/fisiología , Músculo Esquelético/patología , Atrofia Muscular/patología , Enfermedades Musculares/patología , Animales , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Músculo Esquelético/metabolismo
11.
J Cell Biol ; 191(1): 101-13, 2010 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-20921137

RESUMEN

The size of skeletal muscle cells is precisely regulated by intracellular signaling networks that determine the balance between overall rates of protein synthesis and degradation. Myofiber growth and protein synthesis are stimulated by the IGF-1/Akt/mammalian target of rapamycin (mTOR) pathway. In this study, we show that the transcription factor JunB is also a major determinant of whether adult muscles grow or atrophy. We found that in atrophying myotubes, JunB is excluded from the nucleus and that decreasing JunB expression by RNA interference in adult muscles causes atrophy. Furthermore, JunB overexpression induces hypertrophy without affecting satellite cell proliferation and stimulated protein synthesis independently of the Akt/mTOR pathway. When JunB is transfected into denervated muscles, fiber atrophy is prevented. JunB blocks FoxO3 binding to atrogin-1 and MuRF-1 promoters and thus reduces protein breakdown. Therefore, JunB is important not only in dividing populations but also in adult muscle, where it is required for the maintenance of muscle size and can induce rapid hypertrophy and block atrophy.


Asunto(s)
Músculo Esquelético/citología , Proteínas Proto-Oncogénicas c-jun/fisiología , Animales , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/metabolismo , Hipertrofia , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Atrofia Muscular/metabolismo , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/metabolismo
12.
Cell Metab ; 10(6): 507-15, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19945408

RESUMEN

The ubiquitin-proteasome and autophagy-lysosome pathways are the two major routes for protein and organelle clearance. In skeletal muscle, both systems are under FoxO regulation and their excessive activation induces severe muscle loss. Although altered autophagy has been observed in various myopathies, the specific role of autophagy in skeletal muscle has not been determined by loss-of-function approaches. Here, we report that muscle-specific deletion of a crucial autophagy gene, Atg7, resulted in profound muscle atrophy and age-dependent decrease in force. Atg7 null muscles showed accumulation of abnormal mitochondria, sarcoplasmic reticulum distension, disorganization of sarcomere, and formation of aberrant concentric membranous structures. Autophagy inhibition exacerbated muscle loss during denervation and fasting. Thus, autophagy flux is important to preserve muscle mass and to maintain myofiber integrity. Our results suggest that inhibition/alteration of autophagy can contribute to myofiber degeneration and weakness in muscle disorders characterized by accumulation of abnormal mitochondria and inclusions.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos/genética , Músculo Esquelético/patología , Atrofia Muscular/genética , Envejecimiento/genética , Envejecimiento/patología , Animales , Proteína 7 Relacionada con la Autofagia , Desnervación , Ayuno , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Mitocondrias/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/patología , Miofibrillas/patología , Especificidad de Órganos , Sarcómeros/patología , Retículo Sarcoplasmático/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA